Skip to main content

Dopamine in psychiatry: a historical perspective

Abstract

Dopamine is the principal transmitter of several central nervous system pathways originating in the midbrain and critically involved in motor activity, learning and motivation, disruptions of which have been implicated in a number of disorders, including Parkinson disease and schizophrenia. Dopamine played a particularly significant role in the history of neurochemistry. Following a series of investigations between 1957 and 1965, commencing in the laboratory and completed in the clinic, the significance of chemical neurotransmission for normal CNS function was first demonstrated in the case of dopamine.

This is a preview of subscription content, access via your institution.

References

  • Andén N-E, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970) Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314

    Article  PubMed  Google Scholar 

  • Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD (2017) The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 22:666–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68

    CAS  PubMed  Google Scholar 

  • Baumeister AA, Francis JL (2002) Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 11:265–277

    Article  PubMed  Google Scholar 

  • Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20:1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertler Å, Rosengren E (1959) Occurrence and distribution of dopamine in brain and other tissues. Experientia 15:10–11

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der l-3,4-Dioxyphenylalanin (= DOPA)-Effekt bei der Parkinson-Akinese. Wr klin Wschr 73:787–788

    CAS  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493

    CAS  PubMed  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis. Neuropsychopharmacology 1:179–186

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1998) Arvid Carlsson. In: LR Squire (ed) The history of neuroscience in autobiography. vol 2, pp 28–66. Academic Press, San Diego

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on the formation of 3-hydroxytyramine and normetanephrine in mouse brain. Acta Pharmacol 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    Article  CAS  PubMed  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  CAS  PubMed  Google Scholar 

  • Dale E, Bang-Andersen B, Sánchez C (2015) Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 95:81–97

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Kahn R, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Degkwitz R, Frowein R, Kulenkampff C, Mohs U (1960) Über die Wirkungen des L-DOPA beim Menschen und deren Beeinflussung durch Reserpin, Iproniazid und Vitamin B6. Klin Wschr 38:120–123

    Article  CAS  PubMed  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  CAS  PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38:1236–1239

    Article  CAS  PubMed  Google Scholar 

  • Engel J, Carlsson A (1977) Catecholamines and behavior. Curr Dev Psychopharmacol 4:1–32

    CAS  PubMed  Google Scholar 

  • Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley PB (2003) The dopamine and l-DOPA story. In: Beans, roots and leaves. A history of the chemical therapy of parkinsonism. Tectum, Marburg, pp 333–387

    Google Scholar 

  • Foley PB (2014) Sons and daughters beyond your control: episodes in the prehistory of the attention deficit/hyperactivity syndrome. Atten Defic Hyperact Disord 6:125–151

    Article  PubMed  Google Scholar 

  • Foley PB (2019) Psychopharmacology: a brief overview of its history. In: Riederer P, Laux G, Mulsant B, Le W, Nagatsu T (eds) NeuroPsychopharmacotherapy. Springer, Vienna (in press)

    Google Scholar 

  • Hökfelt T (2010) Looking at neurotransmitters in the microscope. Prog Neurobiol 90:101–118

    Article  CAS  PubMed  Google Scholar 

  • Horn AS, Snyder SH (1971) Chlorpromazine and dopamine: conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proc Natl Acad Sci USA 68:2325–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornykiewicz O (1992) From dopamine to Parkinson’s disease: a personal research record. In: Samson F, Adelman G (eds) The neurosciences: paths of discovery II. Birkhäuser, Boston, pp 125–147

    Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Carney MW, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 1:848–851

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Schaffner KF (2011) The dopamine hypothesis of schizophrenia: an historical and philosophical analysis. Philos Psychiatr Psychol 18:41–63

    Article  Google Scholar 

  • Kety SS (1962) Résumé: I. Biochimie. In: Ajuriaguerra JD (ed) Monoamines et système nerveux central. Symposium Bel-Air, Genève, Septembre 1961. Georg et Cie, Genève, pp 263–268

    Google Scholar 

  • Ledonne A, Mercuri NB (2017) Current concepts on the physiopathological relevance of dopaminergic receptors. Front Cell Neurosci 11:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagu KA (1957) Catechol compounds in rat tissues and in brains of different animals. Nature 180:244–245

    Article  CAS  PubMed  Google Scholar 

  • Mulinari S (2012) Monoamine theories of depression: historical impact on biomedical research. J Hist Neurosci 21:366–392

    Article  PubMed  Google Scholar 

  • Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA (2015) The dopamine theory of addiction: 40 years of highs and lows. Nature Rev Neurosci 16:305–312

    Article  CAS  Google Scholar 

  • Poirier LJ, Sourkes TL (1980) This week’s Citation Classic. Curr Contents 25:14

    Google Scholar 

  • Raab W (1948) Specific sympathomimetic substance in the brain. Am J Physiol 152:324–339

    Article  CAS  PubMed  Google Scholar 

  • Randrup A, Munkvad I (1974) Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kenkyu no Shimpo (Adv Neurol Sci) 5:42–48

    Google Scholar 

  • Sano HS (2000) Biochemistry of the extrapyramidal system. Park Rel Disord 6:1–6

    Article  Google Scholar 

  • Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32:586–587

    Article  CAS  PubMed  Google Scholar 

  • Sano I, Taniguchi K, Gamo T, Takesada M, Kakimoto Y (1960) Die Katechinamine im Zentralnervensystem. Klin Wschr 38:57–62

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 509:509–522

    Article  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Couture J (2014) A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 48:209–225

    Article  PubMed  Google Scholar 

  • Snyder SH (1982) Schizophrenia. Lancet 2:970–973

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA, Cascella NG, Lahti RA, Lindberg M, Carlsson A (1992) Pharmacologic properties of (–)-3PPP (preclamol) in man. J Neural Transm 88:165–175

    Article  CAS  Google Scholar 

  • Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9:329–336

    Article  PubMed  Google Scholar 

  • van Rossum JM (1967) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Neuro-psycho-pharmacology. Proceedings of the fifth international congress of the Collegium Internationale Neuro-psychopharmacologicum, 28th–31st March 1966. Excerpta Medica Foundation, Amsterdam, pp 321–329

  • van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, Geyer MA (2015) The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 753:114–126

    Article  CAS  PubMed  Google Scholar 

  • Vane JR, Wolstenholme GEW, O’Connor M (eds) (1960) CIBA foundation symposium jointly with committee for symposia on drug action on adrenergic mechanisms (28th–31st March 1960). J. & A. Churchill, London

    Google Scholar 

  • Vogt M (1960) Central adrenergic mechanisms. Chairman’s opening remarks. In: Vane JR, Wolstenholme GEW, O’Connor M (eds) CIBA foundation symposium jointly with committee for symposia on drug action on adrenergic mechanisms (28th–31st March 1960). J. & A. Churchill, London, pp 382–385

    Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Bernard Foley.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, P.B. Dopamine in psychiatry: a historical perspective. J Neural Transm 126, 473–479 (2019). https://doi.org/10.1007/s00702-019-01987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-019-01987-0

Keywords