A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths

Abstract

This review appraises over 150 recent original papers reporting data that demonstrate the greatly reduced tyramine content of modern-day ‘foods’, about which the medical literature has a paucity of information. It discusses the cardiovascular pharmacology of tyramine and the characteristics, extent, risks, and treatment of the blood pressure increases that sometimes result from tyramine ingestion (the pressor response). In past decades, cheese was the only food associated with documented fatalities resulting from hypertension. Today, few foods contain problematically high tyramine levels, which is a result of changes in international food production techniques (especially the use of starter cultures), and hygiene regulations. Nowadays, even ‘matured’ cheeses are usually safe in healthy-sized portions. The mechanism by which tyramine may be produced in foods (by certain micro-organisms) is explained and hundreds of recent estimations of cheeses are reviewed. Numerous other previously inadequately documented foods are reviewed, including fish and soy sauces, salami-type sausages, dried meats, beers, wines, and various condiments. Evidence that the risk of harm from the pressor response has previously been overstated is reviewed, and the iatrogenic harms from hasty and aggressive treatment of hypertensive urgency are re-evaluated. Evidence now suggests that MAOIs are of comparable safety to many newer drugs and are straightforward to use. Previously held concerns about MAOIs are misplaced and some are of over-estimated consequence. The variability of pressor sensitivity to tyramine between individuals means that the knowledge and judgement of doctors, and some care, are still required.

This is a preview of subscription content, log in to check access.

References

  1. Al Bulushi I, Poole S, Deeth HC, Dykes GA (2009) Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation—a review. Crit Rev Food Sci Nutr 49:369–377

    CAS  Article  Google Scholar 

  2. Alaniz-Palacios A, Martinez-Torres A (2017) Antagonistic effect of dopamine structural analogues on human GABArho1 receptor. Sci Rep 7:17385. https://doi.org/10.1038/s41598-017-17530-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Andreu N, Damase-Michel C, Senard JM, Rascol O, Montastruc JL (1997) A dose-ranging study of selegiline in patients with Parkinson’s disease: effect of platelet monoamine oxidase activity. Mov Disord 12:293–296

    CAS  Article  Google Scholar 

  4. Anglin R, Yuan Y, Moayyedi P, Tse F, Armstrong D, Leontiadis GI (2014) Risk of upper gastrointestinal bleeding with selective serotonin reuptake inhibitors with or without concurrent nonsteroidal anti-inflammatory use: a systematic review and meta-analysis. Am J Gastroenterol 109:811–819. https://doi.org/10.1038/ajg.2014.82

    CAS  Article  PubMed  Google Scholar 

  5. Angst J, Hengartner MP, Rogers J, Schnyder U, Steinhausen HC, Ajdacic-Gross V, Rossler W (2014) Suicidality in the prospective Zurich study: prevalence, risk factors and gender. Eur Arch Psychiatry Clin Neurosci 264:557–565. https://doi.org/10.1007/s00406-014-0500-1

    Article  PubMed  Google Scholar 

  6. Anon (2011) EFSA panel on biological hazards (BIOHAZ); scientific opinion on scientific opinion on risk based control of biogenic amine formation fermented foods. EFSA J 9:2393. https://doi.org/10.2903/j.efsa.2011.2393. http://www.efsa.europa.eu/efsajournal. Accessed 1 Apr 2017

  7. Bar-Am O, Gross A, Friedman R, Finberg JP (2012) Cardiovascular baroreceptor activity and selective inhibition of monoamine oxidase. Eur J Pharmacol 15:226–230. https://doi.org/10.1016/j.ejphar.2012.03.026

    CAS  Article  Google Scholar 

  8. Berlin I, Zimmer R, Cournot A, Payan C, Pedarriosse AM, Puech AJ (1989) Determination and comparison of the pressor effect of tyramine during long-term moclobemide and tranylcypromine treatment in healthy volunteers. Clin Pharmacol Ther 46:344–351

    CAS  Article  Google Scholar 

  9. Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271

    CAS  Article  Google Scholar 

  10. Bevan P, Bradshaw CM, Pun RY, Slater NT, Szabadi E (1978) Comparison of the responses of single cortical neurones to tyramine and noradrenaline: effects of desipramine. Br J Pharmacol 63:651–657

    CAS  Article  Google Scholar 

  11. Bieck PR, Antonin KH (1988) Oral tyramine pressor test and the safety of monoamine oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy subjects. J Clin Psychopharmacol 8:237–245

    CAS  Article  Google Scholar 

  12. Bieck PR, Antonin KH (1989) Tyramine potentiation during treatment with MAO inhibitors: brofaromine and moclobemide vs irreversible inhibitors. J Neural Transm Suppl 28:21–31

    CAS  PubMed  Google Scholar 

  13. Bieck PB, Antonin K-H (1994) Tyramine potentiation during treatment with MAOIs. In: Kennedy SH (ed) Clinical advances in monoamine oxidase inhibitor therapies. American Psychiatric Press, Washington, London, pp 83–110

    Google Scholar 

  14. Blackwell B (1963) Hypertensive crisis due to monoamine-oxidase. Inhib Lancet 38:849–850

    Article  Google Scholar 

  15. Blackwell B, Mabbitt LA (1965) Tyramine in cheese related to hypertensive crises after monoamine-oxidase. Inhib Lancet 1:938–940

    CAS  Article  Google Scholar 

  16. Blackwell B, Marley E (1964) Interaction between cheese and monoamine-oxidase inhibitors in rats and cats. Lancet 1:530–531

    CAS  Article  Google Scholar 

  17. Blackwell B, Marley E, Ryle A (1964) Hypertensive crisis associated with monoamine-oxidase Inhibitors. Lancet 1:722–723

    CAS  Article  Google Scholar 

  18. Blackwell B, Marley E, Price J, Taylor D (1967) Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 113:349–365

    CAS  Article  Google Scholar 

  19. Broadley KJ (2010) The vascular effects of trace amines and amphetamines. Pharmacol Ther 125:363–375. https://doi.org/10.1016/j.pharmthera.2009.11.005

    CAS  Article  PubMed  Google Scholar 

  20. Brodie BB, Costa E, Groppetti A, Matsumoto C (1968) Interaction between desipramine, tyramine, and amphetamine at adrenergic neurones. Br J Pharmacol 34:648–658

    CAS  Article  Google Scholar 

  21. Buckley NA, Dawson AH, Isbister GK (2014) Serotonin syndrome. BMJ. https://doi.org/10.1136/bmj.g1626

    Article  PubMed  Google Scholar 

  22. Bulling M, Burns R (1988) Occipital cortical “angina” induced by nifedipine. Med J Aust 148:266

    CAS  PubMed  Google Scholar 

  23. Bullock D, Irvine O (1956) A chromatographic study of Cheddar cheese ripening. J Dairy Sci 39:1229–1235

    CAS  Article  Google Scholar 

  24. Burkard W, d’Agostini F, Kettler R, Da Prada M (1992) Interaction of moclobemide and tricyclic antidepressants with the tyramine pressor effect in rats. Psychopharmacology 106:S35–S36

    CAS  Article  Google Scholar 

  25. Burton TJ, Wilkinson IB (2008) The dangers of immediate-release nifedipine in the emergency treatment of hypertension. J Hum Hypertens 22:301–302. https://doi.org/10.1038/sj.jhh.1002324

    CAS  Article  PubMed  Google Scholar 

  26. Campbell HE et al (2015) Costs and quality of life associated with acute upper gastrointestinal bleeding in the UK: cohort analysis of patients in a cluster randomised trial. BMJ Open 5:e007230. https://doi.org/10.1136/bmjopen-2014-007230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Chalon SA et al (2003) Duloxetine increases serotonin and norepinephrine availability in healthy subjects: a double-blind controlled study. Neuropsychopharmacology 28:1685–1693

    CAS  Article  Google Scholar 

  28. Chobanian AV et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252. https://doi.org/10.1161/01.HYP.0000107251.49515.c2

    CAS  Article  PubMed  Google Scholar 

  29. Cockhill LA, Remick RA (1987) Blood pressure effects of monoamine oxidase inhibitors—the highs and lows. Can J Psychiatry 32:803–808

    CAS  Article  Google Scholar 

  30. Colliard M, Michelet A, Tcherdakoff P (1981) Treatment of certain refractory arterial hypertensions with a monoamine oxidase inhibitor Arch Mal Coeur Vaiss 74:99–106

    PubMed  Google Scholar 

  31. De Villiers JC (1966) Intracranial haemorrhage in patients treated with monoamineoxidase inhibitors. Br J Psychiatry 112:109–118

    Article  Google Scholar 

  32. Dostert P, Castelli MG, Cicioni P, Strolin Benedetti M (1994) Reboxetine prevents the tranylcypromine-induced increase in tyramine levels in rat heart. J Neural Transm 41:149–153

    CAS  Google Scholar 

  33. Feldstein C (2007) Management of hypertensive crises. Am J Ther 14:135–139. https://doi.org/10.1097/01.pap.0000249908.55361.de

    Article  PubMed  Google Scholar 

  34. Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143:133–152. https://doi.org/10.1016/j.pharmthera.2014.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Finberg JPM, Tenne M (1982) Relationship between tyramine potentiation and selective inhibition of monoamine oxidase types A and B in the rat vas deferens. Br J Pharmacol 77:13–21

    CAS  Article  Google Scholar 

  36. Fischer JE, Horst WD, Kopin IJ (1965) Beta-hydroxylated sympathomimetic amines as false neurotransmitters. Br J Pharmacol Chemother 24:477–484

    CAS  Article  Google Scholar 

  37. Flanigan JS, Vitberg D (2006) Hypertensive emergency and severe hypertension: what to treat, who to treat, and how to treat. Med Clin North Am 90:439–451. https://doi.org/10.1016/j.mcna.2005.11.008

    Article  PubMed  Google Scholar 

  38. Flockhart DA (2012) Dietary restrictions and drug interactions with monoamine oxidase inhibitors: an update J Clin Psychiatry 73(Suppl 1):17–24 https://doi.org/10.4088/JCP.11096su1c.03

    CAS  Article  PubMed  Google Scholar 

  39. Frascarelli S et al (2008) Cardiac effects of trace amines: pharmacological characterization of trace amine-associated receptors. Eur J Pharmacol 587:231–236

    CAS  Article  Google Scholar 

  40. Freyschuss U, Sjoqvist F, Tuck D (1970) Tyramine pressor effects in man before and during treatment with nortriptyline or ECT: correlation between plasma level and effect of nortriptyline. Eur J Clin Pharmacol 2:72–78. https://doi.org/10.1007/BF00420709

    CAS  Article  Google Scholar 

  41. Gardini F, Ozogul Y, Suzzi G, Tabanelli G, Ozogul F (2016) Technological factors affecting biogenic amine content in foods. A Rev Front Microbiol 7:1218. https://doi.org/10.3389/fmicb.2016.01218

    Article  Google Scholar 

  42. Gemici K, Baran I, Bakar M, Demircan C, Ozdemir B, Cordan J (2003) Evaluation of the effect of the sublingually administered nifedipine and captopril via transcranial doppler ultrasonography during hypertensive crisis. Blood Press 12:46–48

    PubMed  Google Scholar 

  43. Georgotas A, McCue RE, Friedman E, Cooper TB (1987) A placebo-controlled comparison of the effect of nortriptyline and phenelzine on orthostatic hypotension in elderly depressed patients. J Clin Psychopharmacol 7:413–416

    CAS  Article  Google Scholar 

  44. Ghose K, Gifford LA, Turner P, Leighton M (1976) Studies of the interaction of desmethylimipramine with tyramine in man after a single oral dose, and its correlation with plasma concentration. Br J Clin Pharmacol 3:334–337

    CAS  Article  Google Scholar 

  45. Giller E Jr, Bialos D, Harkness L, Riddle M (1984) Assessing treatment response to the monoamine oxidase inhibitor isocarboxazid. J Clin Psychiatry 45:44–48

    PubMed  Google Scholar 

  46. Gillman PK (2005a) Drug interactions and fluoxetine: a commentary from a clinician’s perspective. Ex Op Drug Saf 4:965–969

    CAS  Article  Google Scholar 

  47. Gillman PK (2005b) Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 95:434–441

    CAS  Article  Google Scholar 

  48. Gillman PK (2006a) A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action. Biol Psychiatry 59:1046–1051

    CAS  Article  Google Scholar 

  49. Gillman PK (2006b) A systematic review of the serotonergic effects of mirtazapine: implications for its dual action status. Hum Psychopharmacol 21:117–125

    CAS  Article  Google Scholar 

  50. Gillman PK (2011a) Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol 31:66–74. https://doi.org/10.1097/JCP.0b013e31820469ea

    CAS  Article  PubMed  Google Scholar 

  51. Gillman PK (2011b) CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. J Psychopharmacol (Oxf) 25:423–429. https://doi.org/10.1177/0269881109359098

    CAS  Article  Google Scholar 

  52. Gillman PK (2017) “Much ado about nothing”: monoamine oxidase inhibitors, drug interactions, and dietary tyramine. CNS Spectr. https://doi.org/10.1017/S1092852916000651

    Article  PubMed  Google Scholar 

  53. Goren T, Adar L, Sasson N, Weiss YM (2010) Clinical pharmacology tyramine challenge study to determine the selectivity of the monoamine oxidase type B (MAO-B) inhibitor rasagiline. J Clin Pharmacol 50:1420–1428. https://doi.org/10.1177/0091270010369674

    CAS  Article  PubMed  Google Scholar 

  54. Graefe KH et al (1999) Sympathomimetic effects of MIBG: comparison with tyramine. J Nucl Med 40:1342–1351

    CAS  PubMed  Google Scholar 

  55. Grossman E, Messerli FH, Grodzicki T, Kowey P (1996) Should a moratorium be placed on sublingual nifedipine capsules given for hypertensive emergencies and pseudoemergencies? JAMA 276:1328–1331

    CAS  Article  Google Scholar 

  56. Grossman E, Nadler M, Sharabi Y, Thaler M, Shachar A, Shamiss A (2005) Antianxiety treatment in patients with excessive hypertension. Am J Hypertens 18:1174–1177

    CAS  Article  Google Scholar 

  57. Haykowsky MJ, Findlay JM, Ignaszewski AP (1996) Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports Clin. J Sport Med 6:52–55

    CAS  Google Scholar 

  58. Hungerford JM (2010) Scombroid poisoning: a review. Toxicon 56:231–243. https://doi.org/10.1016/j.toxicon.2010.02.006

    CAS  Article  PubMed  Google Scholar 

  59. Isbister GK, Buckley NA, Whyte IM (2007) Serotonin toxicity: a practical approach to diagnosis and treatment. Med J Aust 187:361–365

    PubMed  Google Scholar 

  60. Ishibashi Y et al (1999) Sublingual nifedipine in elderly patients: even a low dose induces myocardial ischaemia. Clin Exp Pharmacol Physiol 26:404–410

    CAS  Article  Google Scholar 

  61. Jung SY, Choi NK, Kim JY, Chang Y, Song HJ, Lee J, Park BJ (2011) Short-acting nifedipine and risk of stroke in elderly hypertensive patients. Neurology 77:1229–1234. https://doi.org/10.1212/WNL.0b013e318230201a

    CAS  Article  PubMed  Google Scholar 

  62. Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Korn A, Eichler HG, Fischbach R, Gasic S (1986) Moclobemide, a new reversible MAO inhibitor—interaction with tyramine and tricyclic antidepressants in healthy volunteers and depressive patients. Psychopharmacology 88:153–157

    CAS  Article  Google Scholar 

  64. Kosikowski KV (1954) A quantitative appraisal of the free amino acids in foreign type cheese. J Dairy Sci 37:167–172

    Article  Google Scholar 

  65. Kronig MH, Roose SP, Walsh BT, Woodring S, Glassman AH (1983) Blood pressure effects of phenelzine. J Clin Psychopharmacol 3:307–310

    CAS  Article  Google Scholar 

  66. Kurl S, Laukkanen JA, Rauramaa R, Lakka TA, Sivenius J, Salonen JT (2001) Systolic blood pressure response to exercise stress test and risk of stroke. Stroke 32:2036–2041

    CAS  Article  Google Scholar 

  67. Lader MH, Sakalis G, Tansella M (1970) Interactions between sympathomimetic amines and a new monoamine oxidase inhibitor. Psychopharmacologia 18:118–123

    CAS  Article  Google Scholar 

  68. Ladero V, Calles-Enriquez M, Fernandez MA, Alvarez M (2010) Toxicological effects of dietary biogenic amines current nutrition and food. Science 6:145–156

    CAS  Google Scholar 

  69. Larsen JK, Krogh-Nielsen L, Brøsen K (2016) The monoamine oxidase inhibitor isocarboxazid is a relevant treatment option in treatment-resistant depression-experience-based strategies in danish psychiatry danish psychiatry health care. Curr Rev 4:168. https://doi.org/10.4172/2375-4273.1000168

    Article  Google Scholar 

  70. Latorre-Moratalla ML, Bover-Cid S, Veciana-Nogues MT, Vidal-Carou MC (2012) Control of biogenic amines in fermented sausages: role of starter cultures. Front Microbiol 3:169. https://doi.org/10.3389/fmicb.2012.00169

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Lavin MR, Mendelowitz A, Kronig MH (1993) Spontaneous hypertensive reactions with monoamine oxidase inhibitors. Biol Psychiatry 34:146–151

    CAS  Article  Google Scholar 

  72. Lee YC, Shau WY, Chang CH, Chen ST, Lin MS, Lai MS (2012) Antidepressant use and the risk of upper gastrointestinal bleeding in psychiatric patients: a nationwide cohort study in Taiwan. J Clin Psychopharmacol 32:518–524. https://doi.org/10.1097/JCP.0b013e31825ccd5a

    CAS  Article  PubMed  Google Scholar 

  73. Lin SC, Hsu T, Fredrickson PA, Richelson E (1987) Yohimbine- and tranylcypromine-induced postural hypotension. Am J Psychiatry 144:119

    CAS  PubMed  Google Scholar 

  74. Linares DM, Del Rio B, Ladero V, Martinez N, Fernandez M, Martin MC, Alvarez MA (2012) Factors influencing biogenic amines accumulation in dairy. Prod Front Microbiol 3:180. https://doi.org/10.3389/fmicb.2012.00180

    Article  Google Scholar 

  75. Linares DM et al (2016) Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem 197:658–663. https://doi.org/10.1016/j.foodchem.2015.11.013

    CAS  Article  PubMed  Google Scholar 

  76. Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG (2013) Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci Technol 30:38–55

    CAS  Article  Google Scholar 

  77. Ma X, Balaban MO, Zhang L, Emanuelsson-Patterson EA, James B (2014) Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality. J Food Science 79:E1528–E1534

    CAS  Article  Google Scholar 

  78. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790

    CAS  Article  Google Scholar 

  79. Marik PE, Rivera R (2011) Hypertensive emergencies: an update. Curr Opin Crit Care 17:569–580. https://doi.org/10.1097/MCC.0b013e32834cd31d

    Article  PubMed  Google Scholar 

  80. Matsuda M, Watanabe K, Saito A, Matsumura K, Ichikawa M (2007) Circumstances, activities, and events precipitating aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 16:25–29. https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.09.001

    Article  PubMed  Google Scholar 

  81. Maxwell MH, Bernstein H, Roth S, Kleeman CR (1960) Monoamine oxidase inhibitors in hypertension. Am J Cardiol 6:1146–1151

    CAS  Article  Google Scholar 

  82. Mayer HK, Fiechter G, Fischer E (2010) A new ultra-pressure liquid chromatography method for the determination of biogenic amines in cheese. J Chromatogr A 1217:3251–3257

    CAS  Article  Google Scholar 

  83. McCormack D, Buckley N (2006) Psychostimulant poisoning. Aust Prescr 29:109–111

    Article  Google Scholar 

  84. Meck JV, Martin DS, D’Aunno DS, Waters WW (2003) Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function. J Cardiovasc Pharmacol 41:126–131

    CAS  Article  Google Scholar 

  85. Messerli FH, Eslava DJ (2008) Treatment of hypertensive emergencies: blood pressure cosmetics or outcome evidence? J Hum Hypertens 22:585–586. https://doi.org/10.1038/jhh.2008.28

    CAS  Article  PubMed  Google Scholar 

  86. Migneco A, Ojetti V, De Lorenzo A, Silveri NG, Savi L (2004) Hypertensive crises: diagnosis and management in the emergency room. Eur Rev Med Pharmacol Sci 8:143–152

    CAS  PubMed  Google Scholar 

  87. Mohammed GI, Bashammakh AS, Alsibaai AA, Alwael H, El-Shahawi MS (2016) A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs TrAC. Trends Anal Chem 78:84–94. https://doi.org/10.1016/j.trac.2016.02.007

    CAS  Article  Google Scholar 

  88. Morton C, Hickey-Dwyer M (1992) Cortical blindness after nifedipine treatment. BMJ 305:693

    CAS  Article  Google Scholar 

  89. Mukhtar TK et al (2016) The falling rates of hospital admission, case fatality, and population-based mortality for subarachnoid hemorrhage in England, 1999–2010. J Neurosurg 125:698–704. https://doi.org/10.3171/2015.5.JNS142115

    Article  PubMed  Google Scholar 

  90. Murray L, Daly F, Little M, Cadogan M (2011) Toxicology handbook. Elsevier, Chatswood

    Google Scholar 

  91. Nebelin E, Pillai S, Lund E, Thomsen J (1980) On the formation of N-nitrosopyrrolidine from potential precursors and nitrite IARC Sci Publ 31:183–193

    CAS  Google Scholar 

  92. O’Brien V (2011) The monoamine oxidase inhibitors relics reconsidered. Psychiatr Ann 41:176–183

    Google Scholar 

  93. O’Brien S, McKeon P, O’Regan M, O’Flaherty A, Patel R (1992) Blood pressure effects of tranylcypromine when prescribed singly and in combination with amitriptyline. J Clin Psychopharmacol 12:104–109

    PubMed  Google Scholar 

  94. O’Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. Naunyn Schmiedebergs Arch Pharmacol 322:198–202

    Article  Google Scholar 

  95. O’Sullivan DJ, Giblin L, McSweeney PL, Sheehan JJ, Cotter PD (2013) Nucleic acid-based approaches to investigate microbial-related cheese quality defects. Front Microbiol 4:1–53. https://doi.org/10.3389/fmicb.2013.00001

    Article  PubMed  PubMed Central  Google Scholar 

  96. Oates JA, Seligmann AW, Clark MA, Rousseau P, Lee RE (1965) The relative efficacy of guanethidine, methyldopa and pargyline as antihypertensive agents N. Engl J Med 273:729–734. https://doi.org/10.1056/NEJM196509302731402

    CAS  Article  Google Scholar 

  97. Onal A, Tekkeli SE, Onal C (2013) A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem 138:509–515. https://doi.org/10.1016/j.foodchem.2012.10.056

    CAS  Article  PubMed  Google Scholar 

  98. Palatini P et al (1989) Blood pressure changes during heavy-resistance exercise. J Hypertens Suppl 7:S72–S73

    CAS  Article  Google Scholar 

  99. Palermo C, Muscarella M, Nardiello D, Iammarino M, Centonze D (2013) A multiresidual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal Bioanal Chem 405:1015–1023. https://doi.org/10.1007/s00216-012-6439-z

    CAS  Article  PubMed  Google Scholar 

  100. Pare CM, Kline N, Hallstrom C, Cooper TB (1982) Will amitriptyline prevent the “cheese” reaction of monoamine-oxidase inhibitors? Lancet 2:183–186

    CAS  Article  Google Scholar 

  101. Pare CM, Al Mousawi M, Sandler M, Glover V (1985) Attempts to attenuate the ‘cheese effect’. Combined drug therapy in depressive illness. J Affect Disord 9:137–141

    CAS  Article  Google Scholar 

  102. Patel KK, Young L, Howell EH, Hu B, Rutecki G, Thomas G, Rothberg MB (2016) Characteristics and outcomes of patients presenting with hypertensive urgency in the office setting. JAMA Intern Med 176:981–988. https://doi.org/10.1001/jamainternmed.2016.1509

    Article  PubMed  Google Scholar 

  103. Pei Y, Asif-Malik A, Canales JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Front Neurosci 10:148. https://doi.org/10.3389/fnins.2016.00148

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ (2009) A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 62:526–538. https://doi.org/10.1016/j.neuron.2009.04.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Poveda J, Chicón R, Cabezas L (2015) Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. Int Dairy J 47:94–101

    CAS  Article  Google Scholar 

  106. Rabkin J, Quitkin F, Harrison W, Tricamo E, McGrath P (1984) Adverse reactions to monoamine oxidase inhibitors. Part I. A comparative study. J Clin Psychopharmacol 4:270–278

    CAS  Article  Google Scholar 

  107. Rabkin JG, Quitkin FM, McGrath P, Harrison W, Tricamo E (1985) Adverse reactions to monoamine oxidase inhibitors. Part II treatment correlates and clinical management. J Clin Psychopharmacol 5:2–9

    CAS  Article  Google Scholar 

  108. Ramos R, Valente I, Rodrigues J (2014) Analysis of biogenic amines in wines by salting-out assisted liquid-liquid extraction and high performance liquid chromatography with fluorimetric detection. Talanta 124:146–151

    CAS  Article  Google Scholar 

  109. Rapaport MH (2007) Dietary restrictions and drug interactions with monoamine oxidase inhibitors: the state of the art. J Clin Psychiatry 68(Suppl 8):42–46

    CAS  PubMed  Google Scholar 

  110. Reimann IW, Firkusny L, Antonin KH, Bieck PR (1993) Oxaprotiline: enantioselective noradrenaline uptake inhibition indicated by intravenous amine pressor tests but not alpha 2-adrenoceptor binding to intact platelets in man. Eur J Clin Pharmacol 44:93–95

    CAS  Article  Google Scholar 

  111. Ricken R, Ulrich S, Schlattmann P, Adli M (2017) Tranylcypromine in mind (Part II): review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2017.04.003

    Article  PubMed  Google Scholar 

  112. Robinson DS, Nies A, Corcella J, Cooper TB, Spencer C, Keefover R (1982) Cardiovascular effects of phenelzine and amitriptyline in depressed outpatients. J Clin Psychiatry 43:8–15

    CAS  PubMed  Google Scholar 

  113. Rudnick G (1997) Mechanisms of biogenic amine transporters. In: Reith MEA (ed) Neurotransmitter transporters: structure, function and regulation. Humana Press, Totowa, pp 73–100

    Google Scholar 

  114. Rutigliano G, Accorroni A, Zucchi R (2018) The case for TAAR1 as a modulator of central nervous system. Funct Front Pharmacol 8:00987. https://doi.org/10.3389/fphar.2017.00987

    Article  Google Scholar 

  115. Scavnicar A, Rogelj I, Kocar D, Kse S, Pompe M (2018) Determination of biogenic amines in cheese by ion chromatography with tandem mass spectrometry detection. J AOAC Int. https://doi.org/10.5740/jaoacint.16-0006 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  116. Song P, Wu L, Guan W (2015) Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 7:9872–9895. https://doi.org/10.3390/nu7125505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Spizzirri UG, Parisi OI, Picci N, Restuccia D (2016) Application of LC with evaporative light scattering detector for biogenic amines determination in fair trade cocoa-based products. Food Anal Methods 9:2200–2209. https://doi.org/10.1007/s12161-016-0398-5

    Article  Google Scholar 

  118. Stage KB (2005) Orthostatic side effects of clomipramine and moclobemide during treatment for depression. Nord J Psychiatry 59:298–301

    Article  Google Scholar 

  119. Stahl SM, Felker A (2008) Monoamine oxidase inhibitors: a modern guide to an unrequited class of antidepressants. CNS Spectr 13:855–870

    Article  Google Scholar 

  120. Tidemalm D, Beckman K, Dahlin M, Vaez M, Lichtenstein P, Langstrom N, Runeson B (2015) Age-specific suicide mortality following non-fatal self-harm: national cohort study in Sweden. Psychol Med 45:1699–1707. https://doi.org/10.1017/S0033291714002827

    CAS  Article  PubMed  Google Scholar 

  121. Til HP, Falke HE, Prinsen MK, Willems MI (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol 35:337–348

    CAS  Article  Google Scholar 

  122. Trendelenburg U, Langeloh A, Bonisch H (1987) Mechanism of action of indirectly acting sympathomimetic amines. Blood Vessels 24:261–270

    CAS  PubMed  Google Scholar 

  123. Tsugane S (2005) Salt, salted food intake, and risk of gastric cancer: epidemiologic evidence. Cancer Sci 96:1–6. https://doi.org/10.1111/j.1349-7006.2005.00006.x

    CAS  Article  PubMed  Google Scholar 

  124. Tulen JH, Volkers AC, van den Broek WW, Bruijn JA (2006) Sustained effects of phenelzine and tranylcypromine on orthostatic challenge in antidepressant-refractory depression. J Clin Psychopharmacol 26:542–544

    Article  Google Scholar 

  125. Ulrich S, Ricken R, Adli M (2017) Tranylcypromine in mind (Part I). Rev Pharmacol Eur Neuropsychopharmacol 8:697–713. https://doi.org/10.1016/j.euroneuro.2017.05.007

    CAS  Article  Google Scholar 

  126. Van Dyne JR (1965) Pargyline hydrochloride in treatment of resistant hypertension. N Y State J Med 65:1672–1675

    Google Scholar 

  127. VanDenBerg CM, Blob LF, Kemper EM, Azzaro AJ (2003) Tyramine pharmacokinetics and reduced bioavailability with food. J Clin Pharmacol 43:604–609

    CAS  Article  Google Scholar 

  128. Wimbiscus M, Kostenko O, Malone D (2010) MAO inhibitors: risks, benefits, and lore. Cleve Clin J Med 77:859–882. https://doi.org/10.3949/ccjm.77a.09103

    Article  PubMed  Google Scholar 

  129. Yilmaz S, Pekdemir M, Tural U, Uygun M (2011) Comparison of alprazolam versus captopril in high blood pressure: a randomized controlled trial. Blood Press 20:239–243. https://doi.org/10.3109/08037051.2011.553934

    CAS  Article  PubMed  Google Scholar 

  130. Zajecka JM, Zajecka AM (2014) A clinical overview of monoamine oxidase inhibitors: pharmacological profile, efficacy, safety/tolerability, and strategies for successful outcomes in the management of major depressive disorders. Psych Ann 44:513–523

    Article  Google Scholar 

  131. Zaman MZ, Abdulamir AS, Bakar FA, Jinap Selamat J, Bakar J (2009) A review: microbiological, physicochemical and health impact of high level of biogenic amines in fish sauce. Am J Appl Sci 6:1199–1211

    CAS  Article  Google Scholar 

  132. Zimmer R (1990) Relationship between tyramine potentiation and monoamine oxidase (MAO) inhibition: comparison between moclobemide and other MAO inhibitors. Acta Psychiatr Scand 360:81–83

    CAS  Article  Google Scholar 

  133. Zimmer R, Fischbach R, Breuel HP (1990a) Potentiation of the pressor effect of intravenously administered tyramine during moclobemide treatment. Acta Psychiatr Scand Suppl 360:76–77

    CAS  Article  Google Scholar 

  134. Zimmer R, Puech AJ, Philipp F, Korn A (1990b) Interaction between orally administered tyramine and moclobemide. Acta Psychiatr Scand Suppl 360:78–80

    CAS  Article  Google Scholar 

Download references

Funding

This manuscript was produced without any support, financial or otherwise, from anybody other than the author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Kenneth Gillman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gillman, P.K. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. J Neural Transm 125, 1707–1717 (2018). https://doi.org/10.1007/s00702-018-1932-y

Download citation

Keywords

  • Monoamine oxidase inhibitors
  • Hypertension
  • Decarboxylating enzymes
  • Biogenic amines
  • Tyramine
  • Hypertensive urgency
  • Hypertensive emergency