Skip to main content
Log in

In-depth characterization of the neuroinflammatory reaction induced by peripheral surgery in an animal model

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Delirium is a common complication seen after surgery and anesthesia, in particular in older patients. Although the etiology of postoperative delirium is only incompletely understood, various lines of evidence suggest that proinflammatory signaling from the peripheral site of inflammation to central nervous system results in a decrease of cerebral acetylcholine (ACh) levels thereby inducing neuroinflammation. To corroborate this theory, we applied an animal model for characterization of the neuroinflammatory response after partial hepatectomy (HPx). In this model, the surgery-induced decrease in cerebral ACh levels can be prevented by intraoperative application of physostigmine. Thus, ACh-associated changes in the expression and secretion of inflammation-related compounds can be assessed by comparing the results obtained after surgery, in physostigmine-treated and untreated controls. This way we were able to show that the decrease of cerebral ACh triggers increased secretion of IL-1β, IL-6, TNFα, MIP-2 (CCL3), RANTES, MCP1, IFNgamma, and IP-10. A gene array covering the expression of 370 inflammation-related genes indicated 13 candidates that are induced upon cerebral ACh decrease after HPx. Quantification of the changes in the expression of these candidates by the comparative CT method revealed a significant increase (> 1.5-fold) in the expression of IL-1β, IL-6, TNFα, MIP2, RANTES, MCP1, TLR2, TLR4, HMGB1, TNFSF6, TNFSF12, IL1R1 and ILR6. Thus, our results suggest that peripheral surgery induces a reduction of cerebral ACh levels which trigger a complex neuroinflammatory response. From a clinical point of view, manipulating cerebral ACh levels by procholinergic drugs such as physostigmine could become an option to therapeutically target this kind of neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

HPx:

Partial hepatectomy

POD:

Postoperative delirium

References

  • Acharya NK, Goldwaser EL, Forsberg MM, Godsey GA, Johnson CA, Sarkar A, DeMarshall C, Kosciuk MC, Dash JM, Hale CP et al (2015) Sevoflurane and isoflurane induce structural changes in brain vascular endothelial cells and increase blood–brain barrier permeability: possible link to postoperative delirium and cognitive decline. Brain Res 1620:29–41

    Article  PubMed  CAS  Google Scholar 

  • Asthana S, Greig NH, Hegedus L, Holloway HH, Raffaele KC, Schapiro MB, Soncrant TT (1995) Clinical pharmacokinetics of physostigmine in patients with Alzheimer’s disease. Clin Pharmacol Ther 58:299–309

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Krady JK, Levison SW (2004) Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 78:151–156

    Article  PubMed  CAS  Google Scholar 

  • Bolin LM, Murray R, Lukacs NW, Strieter RM, Kunkel SL, Schall TJ, Bacon KB (1998) Primary sensory neurons migrate in response to the chemokine RANTES. J Neuroimmunol 81:49–57

    Article  PubMed  CAS  Google Scholar 

  • Cerejeira J, Firmino H, Vaz-Serra A, Mukaetova-Ladinska EB (2010) The neuroinflammatory hypothesis of delirium. Acta Neuropathol 119:737–754

    Article  PubMed  Google Scholar 

  • Chavan SS, Pavlov VA, Tracey KJ (2017) Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46:927–942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho J, Nelson TE, Bajova H, Gruol DL (2009) Chronic CXCL10 alters neuronal properties in rat hippocampal culture. J Neuroimmunol 207:92–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C (2010) The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 224:93–100

    Article  PubMed  CAS  Google Scholar 

  • Cortese GP, Burger C (2017) Neuroinflammatory challenges compromise neuronal function in the aging brain: postoperative cognitive delirium and Alzheimer’s disease. Behav Brain Res 322:269–279

    Article  PubMed  CAS  Google Scholar 

  • Fonken LK et al (2016) The alarmin HMGB1 mediates age-induced neuroinflammatory priming. J Neurosci 36:7946–7956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank MG, Weber MD, Watkins LR, Maier SF (2015) Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav Immun 48:1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018. https://doi.org/10.1523/jneurosci.0176-07.2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes GM, Hebert SL, Rogers RC, Hermann GE (2004) Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res 1025:210–219

    Article  PubMed  CAS  Google Scholar 

  • Hshieh TT, Fong TG, Marcantonio ER, Inouye SK (2008) Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol Ser A 63:764–772

    Article  Google Scholar 

  • Jiang P, Ling Q, Liu H, Tu W (2015) Intracisternal administration of an interleukin-6 receptor antagonist attenuates surgery-induced cognitive impairment by inhibition of neuroinflammatory responses in aged rats. Exp Ther Med 9:982–986

    Article  PubMed  CAS  Google Scholar 

  • Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  • Kuno R, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2005) Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol 162:89–96

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco MF, Mocchetti I, Burns MP, Villapol S (2017) Glial- and neuronal-specific expression of CCL5 mRNA in the rat brain. Front Neuroanat 11:137

    Article  PubMed  Google Scholar 

  • Lazovic J, Basu A, Lin HW, Rothstein RP, Krady JK, Smith MB, Levison SW (2005) Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin-1 type 1 receptor-deficient mice conferring neuroprotection. Stroke 36:2226–2231

    Article  PubMed  CAS  Google Scholar 

  • Maldonado JR (2008) Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin 24:657–722

    Article  PubMed  CAS  Google Scholar 

  • Nelson TE, Gruol DL (2004) The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. J Neuroimmunol 156:74–87

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Rossner S, Albrecht C, Mayhaus M, Enderich J, Schliebs R, Wegner M, Arendt T, von der Kammer H (1998) Muscarinic acetylcholine receptors activate the acetylcholinesterase gene promoter. J Physiol Paris 92:257–264

    Article  PubMed  CAS  Google Scholar 

  • Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R (2015) Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front Immunol 6:539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlov VA, Tracey KJ (2015) Neural circuitry and immunity. Immunol Res 63:38–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plaschke K, Muller AK, Kopitz J (2014) Surgery-induced changes in rat IL-1beta and acetylcholine metabolism: role of physostigmine. Clin Exp Pharmacol Physiol 41:663–670

    PubMed  CAS  Google Scholar 

  • Plaschke K, Weigand MA, Fricke F, Kopitz J (2016) Neuroinflammation: effect of surgical stress compared to anaesthesia and effect of physostigmine. Neurol Res 38:397–405

    Article  PubMed  CAS  Google Scholar 

  • Rada P, Mark GP, Vitek MP, Mangano RM, Blume AJ, Beer B, Hoebel BG (1991) Interleukin-1 beta decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain Res 550:287–290

    Article  PubMed  CAS  Google Scholar 

  • Rudolph JL, Ramlawi B, Kuchel GA, McElhaney JE, Xie D, Sellke FW, Khabbaz K, Levkoff SE, Marcantonio ER (2008) Chemokines are associated with delirium after cardiac surgery. J Gerontol Ser A 63:184–189

    Article  Google Scholar 

  • Schall TJ (1991) Biology of the RANTES/SIS cytokine family. Cytokine 3:165–183

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK (2007) Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 27:9301–9309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343

    Article  PubMed  CAS  Google Scholar 

  • Skrede K, Wyller TB, Watne LO, Seljeflot I, Juliebo V (2015) Is there a role for monocyte chemoattractant protein-1 in delirium? Novel observations in elderly hip fracture patients. BMC Res Notes 8:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonar S, Lal G (2015) Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. Front Immunol 6:364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steiner LA (2011) Postoperative delirium. Part 1: pathophysiology and risk factors. Eur J Anaesthesiol 28:628–636

    Article  PubMed  CAS  Google Scholar 

  • Taepavarapruk P, Song C (2010) Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: effects of omega-3 fatty acid EPA treatment. J Neurochem 112:1054–1064

    Article  PubMed  CAS  Google Scholar 

  • Terrando N, Yang T, Ryu JK, Newton PT, Monaco C, Feldmann M, Ma D, Akassoglou K, Maze M (2014) Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol Med 20:667–675

    Google Scholar 

  • Tripathy D, Thirumangalakudi L, Grammas P (2010) RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 31:8–16

    Article  PubMed  CAS  Google Scholar 

  • van Gool WA, van de Beek D, Eikelenboom P (2010) Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375:773–775

    Article  PubMed  CAS  Google Scholar 

  • Whitlock EL, Vannucci A, Avidan MS (2011) Postoperative delirium. Minerva Anestesiol 77:448–456

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zujalovic B, Barth E (2015) Delirium accompanied by cholinergic deficiency and organ failure in a 73-year-old critically ill patient: physostigmine as a therapeutic option. Case Rep Crit Care 2015:793015

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The expert technical assistance of Roland Galmbacher, Klaus Stefan and Sigrun Himmelsbach is gratefully appreciated. We also acknowledge financial support by Dr. Franz Köhler Chemie, Bensheim, Germany.

Funding

This study was supported by a research fund from Dr. Franz Köhler Chemie GmbH (Bensheim, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze Plaschke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Supplementary material 2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaschke, K., Schulz, S., Rullof, R. et al. In-depth characterization of the neuroinflammatory reaction induced by peripheral surgery in an animal model. J Neural Transm 125, 1487–1494 (2018). https://doi.org/10.1007/s00702-018-1909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-018-1909-x

Keywords

Navigation