90 years of monoamine oxidase: some progress and some confusion

Neurology and Preclinical Neurological Studies - Review Article

Abstract

It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted.

Keywords

Monoamine oxidase reaction Inhibitors Kinetics, suicide substrates Parkinson’s disease Ammonia Aldehydes Hydrogen peroxide Imidazolines Depression Propargylamines Hydrazines Cyclopropylamines 

Abbreviations

PD

Parkinson’s disease

PEA

2-Phenylethylamine

MAO

Monoamine oxidase

MAOI

Monoamine oxidase inhibitor

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

THP

Tetrahydropapaveroline

References

  1. Achee FM, Gabay S (1981) Studies of monoamine oxidases. Effect of triton X-100 and bile salts on monoamine oxidase in brain mitochondria. Biochem Pharmacol 30:3151–3157.  https://doi.org/10.1016/0006-2952(81)90512-8 PubMedCrossRefGoogle Scholar
  2. Alemany R, Olmos G, García-Sevilla JA (1997) Labelling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) in rat brain and liver: characterization, regulation and relation to monoamine oxidase enzymes. Naunyn Schmiedebergs Arch Pharmacol 356:39–47.  https://doi.org/10.1007/pl00005026 PubMedCrossRefGoogle Scholar
  3. Anderson MC, Hasan F, McCrodden JM, Tipton KF (1993) Monoamine oxidase inhibitors and the cheese effect. Neurochem Res 18:1145–1149.  https://doi.org/10.1007/bf00978365 PubMedCrossRefGoogle Scholar
  4. Ansari KS, Yu PH, Kruck TP, Tatton WG (1993) Rescue of axotomized immature rat facial motoneurons by R(−)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13:4042–4053PubMedCrossRefGoogle Scholar
  5. Armstrong J, Barlow RB (1976) The ionization of phenolic amines, including apomorphine, dopamine and catecholamines and an assessment of zwitterion constants. Br J Pharmacol 57:501–516.  https://doi.org/10.1111/j.1476-5381.1976.tb10377.x PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arnett CD, Fowler JS, MacGreggor RR, Schyler DJ, Wolf AP, Langström B, Haldin CJ (1987) Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using l-[14C] deprenyl. J Neurochem 49:522–527.  https://doi.org/10.1111/j.1471-4159.1987.tb02895.x PubMedCrossRefGoogle Scholar
  7. Arshad A, Qing H, Wang R, Lu J, Deng Y (2011) Enzymatic condensation of dopamine and acetaldehyde: a salsolinol synthase from rat brain. Biologia 66:1183–1188.  https://doi.org/10.2478/s11756-011-0134-y Google Scholar
  8. Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5:165–176.  https://doi.org/10.1007/bf03033137 PubMedCrossRefGoogle Scholar
  9. Ask AL (1984) Selective inhibition by amiflamine of monoamine oxidase type A in rat brain, liver and duodenum. Naunyn Schmiedebergs Arch Pharmacol 327(1):56–63.  https://doi.org/10.1016/0006-2952(84)90205-3 PubMedCrossRefGoogle Scholar
  10. Atkinson RM, Ditman KS (1965) Tranylcypromine: a review. Clin Pharmacol Ther 6:631–665.  https://doi.org/10.1002/cpt196565631 PubMedCrossRefGoogle Scholar
  11. Audi SH, Dawson CA, Ahlf SB, Roerig DL (2001) Oxygen dependency of monoamine oxidase activity in the intact lung. Am J Physiol Lung Cell Mol Physiol 281:L969-681.  https://doi.org/10.1152/ajplung.2001.281.4.l969 CrossRefGoogle Scholar
  12. Avila M, Balsa MD, Fernandez-Alvarez E, Tipton KF, Unzeta M (1993) The effect of side chain substitution at positions 2 and 3 of the heterocyclic ring of N-acetylenic analogues of tryptamine as monoamine oxidase inhibitors. Biochem Pharmacol 45:2231–2237.  https://doi.org/10.1016/0006-2952(93)90194-2 PubMedCrossRefGoogle Scholar
  13. Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bar-Am O, Weinreb O, Amit T, Youdim MBH (2005) Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 19:1899–1901.  https://doi.org/10.1096/fj.05-3794fje PubMedCrossRefGoogle Scholar
  15. Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315.  https://doi.org/10.1016/j.bcp.2008.11.009 PubMedCrossRefGoogle Scholar
  16. Barwell CJ, Ebrahimi SA (1994) Some kinetic properties of guinea pig liver monoamine oxidase. J Neural Transm Suppl 41:41–45PubMedGoogle Scholar
  17. Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De Duve C (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, d-amino acid oxidase and catalase in rat-liver tissue. Biochem J 92:184–205.  https://doi.org/10.1042/bj0920179 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Becker RE, Giambalvo C, Fox RA, Macho M (1983) Endogenous inhibitors of monoamine oxidase present in human cerebrospinal fluid. Science 221:476–478.  https://doi.org/10.1126/science.6867724 PubMedCrossRefGoogle Scholar
  19. Beckmann H, Moises HW (1983) MAO inhibition as antidepressive mechanism reevaluated. A controlled study with tranylcypromine isomers. Mod Probl Pharmopsychiat 19:211–214.  https://doi.org/10.1159/000407517 Google Scholar
  20. Ben Ramadan Z, Tipton KF (2012) Suicide inhibition of monoamine oxidase from different species by milacemide. Jordan J Biol Sci 5:209–214Google Scholar
  21. Ben Ramadan Z, Wrang ML, Tipton KF (2007) Species differences in the selective inhibition of monoamine oxidase (1-methyl-2-phenylethyl)hydrazine and its potentiation by cyanide. Neurochem Res 32:1783–1790.  https://doi.org/10.1007/s11064-007-9309-x CrossRefGoogle Scholar
  22. Berlin I, Zimmer R, Thiede HM, Payan C, Hergueta T, Robin L, Puech AJ (1990) Comparison of monoamine oxidase inhibiting properties of two reversible and selective monoamine oxidase-A inhibitors moclobemide and toloxatone, and assessment of their effect on psychometric performance in healthy subjects. Br J Clin Pharmacol 30:805–816PubMedPubMedCentralCrossRefGoogle Scholar
  23. Berlin I, Saïd S, Spreux-Varoquaux O, Launay JM, Olivares R, Millet V, Lecrubier Y, Puech AJ (1995) A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 58:444–452.  https://doi.org/10.1016/0009-9236(95)90058-6 PubMedCrossRefGoogle Scholar
  24. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria. Implications for Parkinson’s disease. J Neurochem 73:1127–1137.  https://doi.org/10.1046/j.1471-4159.1999.0731127.x PubMedCrossRefGoogle Scholar
  25. Bieck PR, Antonin KH (1988) Oral tyramine pressor test and the safety of monoamine oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy subjects. J Clin Psychopharmacol 8:237–245PubMedCrossRefGoogle Scholar
  26. Bieck PR, Antonin KH, Balon R, Oxenkrug G (1988) Effect of brofaromine and pargyline on human plasma melatonin concentrations. Prog Neuropsychopharmacol Biol Psychiatry 12:93–101.  https://doi.org/10.1016/0278-5846(88)90064-4 PubMedCrossRefGoogle Scholar
  27. Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9:22–26.  https://doi.org/10.1038/nsb732 PubMedCrossRefGoogle Scholar
  28. Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 100:9750–9755.  https://doi.org/10.1073/pnas.1633804100 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Binda C, Wang J, Li M, Hubalek F, Mattevi A, Edmondson DE (2008) Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B. Biochemistry 47:5616–5625.  https://doi.org/10.1021/bi8002814 PubMedCrossRefGoogle Scholar
  30. Birkmayer W, Knoll J, Riederer P, Youdim MBH (1983) (−)-Deprenyl leads to prolongation of l-dopa efficacy in Parkinson’s disease. Mod Probl Pharmacopsychiatry 19:170–176.  https://doi.org/10.1159/000407513 PubMedCrossRefGoogle Scholar
  31. Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of l-deprenyl to Madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 64:113–127.  https://doi.org/10.1007/bf01245973 PubMedCrossRefGoogle Scholar
  32. Blackwell B, Marley E, Price J, Taylor D (1967) Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 113:349–365.  https://doi.org/10.1192/bjp.113.497.349 PubMedCrossRefGoogle Scholar
  33. Blaschko H, Richter D, Schlossmann H (1937) The oxidation of adrenaline and other amines. Biochem J 31:2187–2196.  https://doi.org/10.1042/bj0312187 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Boulton AA (1991) Phenylethylaminergic modulation of catecholaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 115:139–156.  https://doi.org/10.1016/0278-5846(91)90076-d CrossRefGoogle Scholar
  35. Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612.  https://doi.org/10.1007/s10545-012-9546-2 PubMedCrossRefGoogle Scholar
  36. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580.  https://doi.org/10.1126/science.8211186 PubMedCrossRefGoogle Scholar
  37. Buckman TD, Eiduson S, Boscia R (1983) Investigations of the mechanism of selective inhibition of type B mitochondrial monoamine oxidase by phosphatidylserine. Biochem Pharmacol 32:3639–3647.  https://doi.org/10.1016/0006-2952(83)90316-7 PubMedCrossRefGoogle Scholar
  38. Buys YM, Trope GE, Tatton WG (1995) (−)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14:119–126.  https://doi.org/10.3109/02713689508999923 PubMedCrossRefGoogle Scholar
  39. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430.  https://doi.org/10.3389/fncel.2014.00430 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Callingham BA (1989) Biochemical aspects of the pharmacology of moclobemide. The implications of animal studies. Br J Psychiatry (Suppl. 6):53–60 (Abstract)Google Scholar
  41. Callingham BA, Mazel P, Porter JC (1985) Some properties of amine oxidase activities in the rat intestine. Br J Pharmacol 86(Suppl):553P (Abstract) Google Scholar
  42. Campbell IC, Murphy DL, Walker MN, Lovenberg W, Robinson DS (1980) Monoamine oxidase inhibitors (MAOI) increase rat brain aromatic amino acid decarboxylase activity. Br J Clin Pharmacol 9:431–432.  https://doi.org/10.1111/j.1365-2125.1980.tb01073 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266.  https://doi.org/10.1126/science.1158140 PubMedCrossRefGoogle Scholar
  44. Carpéné C, Collon P, Remaury A, Cordi A, Hudson A, Nutt D, Lafontan M (1995) Inhibition of amine oxidase activity by derivatives that recognize imidazoline I2 sites. J Pharmacol Exp Ther 272:681–688PubMedGoogle Scholar
  45. Carradori S, Gidaro MC, Petzer A, Costa G, Guglielmi P, Chimenti P, Alcaro S, Petzer JP (2016) Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem 64:9004–9011.  https://doi.org/10.1021/acs.jafc.6b03529 PubMedCrossRefGoogle Scholar
  46. Carrillo MC, Kanai S, Sato Y, Ivy GO, Kitani K (1992) Sequential changes in activities of superoxide dismutase and catalase in brain regions and liver during (−)deprenyl infusion in male rats. Biochem Pharmacol 44:2185–2189.  https://doi.org/10.1016/0006-2952(92)90345-j PubMedCrossRefGoogle Scholar
  47. Castagnoli K, Steyn SJ, Magnin G, Van Der Schyf CJ, Fourie I, Khalil A, Castagnoli N Jr (2002) Studies on the interactions of tobacco leaf and tobacco smoke constituents and monoamine oxidase. Neurotox Res 4:151–160.  https://doi.org/10.1080/10298420290015854henX PubMedCrossRefGoogle Scholar
  48. Cawthon RM, Breakefield XO (1983) Differences in the structures of monoamine oxidases A and B in rat clonal cell lines. Biochem Pharmacol 32:441–448.  https://doi.org/10.1016/0006-2952(83)90521-x PubMedCrossRefGoogle Scholar
  49. Cenit MC, Sanz Y, Codoñer-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23:5486–5498.  https://doi.org/10.3748/wjg.v23.i30.5486 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chen XC, Wu GS, Lu JQ, Iqbal J, Qing H, Deng YL (2013) Existence and characterization of salsolinol synthase in neuronal cells and rat brain. Neurochem J 7:192–197.  https://doi.org/10.1134/s1819712413030045 CrossRefGoogle Scholar
  51. Christmas AJ, Coulson CJ, Maxwell DR, Riddell D (1972) A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors. Br J Pharmacol 45:490–503.  https://doi.org/10.1111/j.1476-5381.1972.tb08106.x PubMedPubMedCentralCrossRefGoogle Scholar
  52. Clark A Jr, Clark PA (1985) Local oxygen gradients near isolated mitochondria. Biophys J 48:931–938.  https://doi.org/10.1016/s0006-3495(85)83856-x PubMedPubMedCentralCrossRefGoogle Scholar
  53. Clineschmidt BV, Horita A (1969) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase-I. Studies in vitro. Biochem Pharmacol 18:1011–1020.  https://doi.org/10.1016/0006-2952(69)90104-x PubMedCrossRefGoogle Scholar
  54. Clow A, Glover V, Oxenkrug GF, Sandler M (1989) Stress reduces in vivo inhibition of monoamine oxidase by phenelzine in rat brain. Neurosci Lett 107:331–334.  https://doi.org/10.1016/0304-3940(89)90841-0 PubMedCrossRefGoogle Scholar
  55. Coelho Cerqueira E, Netz PA, Diniz C, Petry do Canto V, Follmer C (2011) Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO. Bioorg Med Chem 19:1724–7416.  https://doi.org/10.1016/j.bmc.2011.10.049 CrossRefGoogle Scholar
  56. Copley SD (2012) Moonlighting is mainstream: paradigm adjustment required. Bioessays 34:578–588.  https://doi.org/10.1002/bies.201100191 PubMedCrossRefGoogle Scholar
  57. Curet O, Damoiseau G, Aubin N, Sontag N, Rovei V, Jarreau FX (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I. Biochemical profile. J Pharmacol Exp Ther 277:253–264PubMedGoogle Scholar
  58. Cuthbert MF, Greenberg MP, Morley SW (1969) Cough and cold remedies: a potential danger to patients on monoamine oxidase inhibitors. Br Med J 5641:404–406.  https://doi.org/10.1136/bmj.1.5641.404 CrossRefGoogle Scholar
  59. Da Prada M, Zurcher G, Wurthrich I, Haefely WE (1988) On tyramine, food beverages and the reversible MAO inhibitor moclobemide. J Neural Transm 26(Suppl):33–56Google Scholar
  60. Da Prada M, Kettler R, Keller HH, Cesura AM, Richards JG, Saura Marti J, Muggli-Maniglio D, Wyss PC, Kyburz E, Imhof R (1990) From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J Neural Transm Suppl 29:279–292PubMedGoogle Scholar
  61. Damberg M (2005) Transcription factor AP-2 and monoaminergic functions in the central nervous system. J Neural Transm 112:1281–1296.  https://doi.org/10.1007/s00702-005-0325-1 PubMedCrossRefGoogle Scholar
  62. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56.  https://doi.org/10.10378/nrn2297 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Das PK, Guha SR (1980) MAO types in guinea pig liver mitochondria. Biochem Pharmacol 29:2049–2053.  https://doi.org/10.1016/0006-2952(80)90490-6 PubMedCrossRefGoogle Scholar
  64. De Girolamo LA, Hargreaves AJ, Billett EE (2001) Protection from MPTP-induced neurotoxicity in differentiating mouse N2a neuroblastoma cells. J Neurochem 76:650–660PubMedCrossRefGoogle Scholar
  65. de Vos WM, de Vos EA (2012) Role of the intestinal microbiome in health. Nutr Rev 70(Suppl 1):S45–S56.  https://doi.org/10.1111/j.1753-4887.2012.00505.x PubMedCrossRefGoogle Scholar
  66. Della Corte L, Tipton KF (1980) The turnover of the A- and B-forms of monoamine oxidase in rat liver. Biochem Pharmacol 29:891–895.  https://doi.org/10.1016/0006-2952(80)90219-1 CrossRefGoogle Scholar
  67. Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69.  https://doi.org/10.1016/j.coph.2017.04.003 PubMedCrossRefGoogle Scholar
  68. Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P (2016) Monoaminergic and histaminergic strategies and treatments in brain diseases. Front Neurosci 10:541.  https://doi.org/10.3389/fnins.2016.00541 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Dostert PL (1984) Myth and reality of the classical MAO inhibitors, reasons for seeking a new generation. In: Tipton KF, Dostert P, Strolin Benedetti M (eds) Monoamine oxidase and disease. Academic Press, London, pp 487–497 (Book chapter) Google Scholar
  70. Dostert PL, Strolin Benedetti M, Tipton KF (1989) Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 9:45–89PubMedCrossRefGoogle Scholar
  71. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T, Mowry BJ, Crowe RR, Silverman JM, Levinson DF, Gejman PV (2004) Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 75:624–638.  https://doi.org/10.1086/424887 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Duboué-Dijon E, Pluhařová E, Domin D, Sen K, Fogarty AC, Chéron N, Laage D (2017) Coupled valence-bond state molecular dynamics description of an enzyme-catalyzed reaction in a non-aqueous organic solvent. J Phys Chem 121:7027–7041.  https://doi.org/10.1021/acs.jpcb.7b03102 CrossRefGoogle Scholar
  73. Dunn RV, Marshall KR, Munro AW, Scrutton NS (2008) The pH dependence of kinetic isotope effects in monoamine oxidase A indicates stabilization of the neutral amine in the enzyme–substrate complex. FEBS J 275:3850–3858.  https://doi.org/10.1111/j.1742-4658.2008.06532.x PubMedCrossRefGoogle Scholar
  74. Dyck LE, Durden DA, Boulton AA (1985) Formation of beta-phenylethylamine from the antidepressant, beta-phenylethylhydrazine. Biochem Pharmacol 34:1925–1929.  https://doi.org/10.1016/0006-2952(85)90310-7 PubMedCrossRefGoogle Scholar
  75. Edelstein SB, Breakefield XO (1986) Monoamine oxidases A and B are differentially regulated by glucocorticoids and ‘aging’ in human skin fibroblasts. Cell Mol Neurobiol 6:121–150.  https://doi.org/10.1007/bf00711066 PubMedCrossRefGoogle Scholar
  76. Edmondson DE, Bhattacharyya AK, Walker MC (1993) Spectral and kinetic studies of imine product formation in the oxidation of p-(N, N-dimethylamino)-benzylamine analogues by monoamine oxidase B. Biochemistry 32:5196–5202.  https://doi.org/10.1021/bi00070a031 PubMedCrossRefGoogle Scholar
  77. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993.  https://doi.org/10.2174/0929867043364784 PubMedCrossRefGoogle Scholar
  78. Egashira T, Takano R, Yamanaka Y (1986) Demonstration of endogenous inhibitors of monoamine oxidase in dog cerebrospinal fluid. Jpn J Pharmacol 42:583–586.  https://doi.org/10.1254/jjp.42.583 PubMedCrossRefGoogle Scholar
  79. Egashira T, Obata T, Nagai T, Kimba Y, Takano R, Yamanaka Y (1989) Endogenous monoamine oxidase inhibitor-like substances in monkey brain. Biochem Pharmacol 38:597–602.  https://doi.org/10.1254/jjp.81.115 PubMedCrossRefGoogle Scholar
  80. Egashira T, Takayama F, Yamanaka Y (1999) The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. Jpn J Pharmacol 81:115–121.  https://doi.org/10.1254/jjp.81.115 PubMedCrossRefGoogle Scholar
  81. Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VG, Dillon MP (1998) ‘Seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 19:381–390.  https://doi.org/10.1016/S0165-6147(98)01244-9 PubMedCrossRefGoogle Scholar
  82. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46.  https://doi.org/10.1016/j.biopha.2003.11.004 PubMedCrossRefGoogle Scholar
  83. Erwin VG, Deitrich RA (1971) The labeling in vivo of monoamine oxidase by 14 C-pargyline: a tool for studying the synthesis of the enzyme. Mol Pharmacol 7:219–228PubMedGoogle Scholar
  84. Fagervall I, Ross SB (1989) Inhibition of monoamine oxidase within monoaminergic neurons in the rat brain by (E)-beta-fluoromethylene-m-tyrosine (MDL 72394). J Neurochem 52:467–471.  https://doi.org/10.1111/j.1471-4159.1989.tb09144.x PubMedCrossRefGoogle Scholar
  85. Fang J, Yu PH, Gorrod JW, Boulton AA (1995) Inhibition of monoamine oxidases by haloperidol and its metabolites: pharmacological implications for the chemotherapy of schizophrenia. Psychopharmacology 118:206–212.  https://doi.org/10.1007/bf0224584 PubMedCrossRefGoogle Scholar
  86. Felner AE, Waldmeier PC (1979) Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmacol 28:995–1002.  https://doi.org/10.1016/0006-2952(79)90293-4 PubMedCrossRefGoogle Scholar
  87. Fernandez-Novoa L, Pastuszko A, Wilson DF (1991) Neurocatin-induced inhibition of monoamine oxidase A in rat brain synaptosomes. Biochem Pharmacol 42:2351–2354.  https://doi.org/10.1016/0006-2952(91)90240-6 PubMedCrossRefGoogle Scholar
  88. Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143:133–152PubMedCrossRefGoogle Scholar
  89. Fischer AG, Schulz AR, Oliner L (1968) Thyroidal biosynthesis of iodothyronines. II. General characteristics and purification of mitochondrial monoamine oxidase. Biochim Biophys Acta 159:460–471.  https://doi.org/10.1016/0005-2744(68)90130-7 PubMedCrossRefGoogle Scholar
  90. Fitzgerald JC, Ugun-Klusek A, Allen G, De Girolamo LA, Hargreaves I, Ufer C, Abramov AY, Billett EE (2014) Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. FASEB J 28:218–229.  https://doi.org/10.1096/fj.13-235481 PubMedCrossRefGoogle Scholar
  91. Fitzpatrick PF (2010) Oxidation of amines by flavoproteins. Arch Biochem Biophys 493:13–25.  https://doi.org/10.1016/j.abb.2009.07.019 PubMedCrossRefGoogle Scholar
  92. Fowler CJ Strolin, Benedetti M (1983) Cimoxatone is a reversible tight-binding inhibitor of the A form of rat brain monoamine oxidase. J Neurochem 40:510–513PubMedCrossRefGoogle Scholar
  93. Fowler CJ, Oreland L (1981) Substrate- and stereoselective inhibitor of human brain monoamine oxidase by 4-dimethylamino-alpha, 2-dimethylphenethylamine (FLA 336). J Pharm Pharmacol 33:403–406PubMedCrossRefGoogle Scholar
  94. Fowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxidase A and B: biochemical, pharmacological, and clinical properties. Med Res Rev 4:323–358.  https://doi.org/10.1002/med.2610040303 PubMedCrossRefGoogle Scholar
  95. Fowler CJ, Mantle TJ, Tipton KF (1982) The nature of the inhibition of rat liver monoamine oxidase types A and B by the acetylenic inhibitors clorgyline, l-deprenyl and pargyline. Biochem Pharmacol 3:3555–3561CrossRefGoogle Scholar
  96. Fowler JS, Volkow ND, Logan J, Wang GJ, MacGregor RR, Schlyer D et al (1994) Slow recovery of human brain MAO B after l-deprenyl (Selegiline) withdrawal. Synapse 18:86–93PubMedCrossRefGoogle Scholar
  97. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP (1996) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 93:14065–14069PubMedPubMedCentralCrossRefGoogle Scholar
  98. Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Zhu W, Franceschi D et al (2003) Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci USA 100:11600–11605PubMedPubMedCentralCrossRefGoogle Scholar
  99. Fowler JS, Logan J, Volkow ND, Shumay E, McCall-Perez F et al (2015) Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain. Neuropsychopharmacol 40:650–657.  https://doi.org/10.1038/npp.2014.214 CrossRefGoogle Scholar
  100. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Corte Della (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68:2067–2079.  https://doi.org/10.1007/s00018-011-0682-x PubMedCrossRefGoogle Scholar
  101. Fuller RW, Hemrick SK (1978) Steric influence on inhibition of monoamine oxidase forms by 2,3-dichloro-alpha-methylbenzylamine. Res Commun Chem Pathol Pharmacol 20:199–202PubMedGoogle Scholar
  102. Galter D, Buervenich S, Carmine A, Anvret M, Olson L (2003) ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis 14:637–647.  https://doi.org/10.1016/j.nbd.2003.09.001 PubMedCrossRefGoogle Scholar
  103. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, Schork AJ, Appadurai V, Buil A, Werge TM, Liu C, White KP; CommonMind Consortium; PsychENCODE Consortium; iPSYCH-BROAD Working Group, Horvath S, Geschwind DH (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693–697.  https://doi.org/10.1126/science.aad6469
  104. Gareri P, Falconi U, De Fazio P, De Sarro G (2000) Conventional and new antidepressant drugs in the elderly. Progr Neurobiol 61:353–396CrossRefGoogle Scholar
  105. Garrick NA, Murphy DL (1980) Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Psychopharmacology 72:27–33.  https://doi.org/10.1007/bf00433804 PubMedCrossRefGoogle Scholar
  106. Garrick NA, Murphy DL (1982) Monoamine oxidase type A: differences in selectivity towards l-norepinephrine compared to serotonin. Biochem Pharmacol 31:4061–4066.  https://doi.org/10.1016/0006-2952(82)90656-6 PubMedCrossRefGoogle Scholar
  107. Gärtner B, Hemmerich P, Zeller EA (1976) Structure of flavin adducts with acetylenic substrates. Chemistry of monoamine oxidase and lactate oxidase inhibition. Eur J Biochem 63:211–221PubMedCrossRefGoogle Scholar
  108. Gerlach M, Youdim MB, Riederer P (1996) Pharmacology of selegiline. Neurology 47(9 Suppl 3):S137–S145PubMedCrossRefGoogle Scholar
  109. Gessa GL, Cuenca E, Costa E (1963) On the mechanism of the hypotensive effects of MAO inhibitors. Ann NY Acad Sci 107:935–941PubMedCrossRefGoogle Scholar
  110. Godar SC, Fite PJ, McFarlin KM, Bortolato M (2016) The role of monoamine oxidase A in aggression: current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 69:90–100.  https://doi.org/10.1016/j.pnpbp.2016.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Grancara S, Ohkubo S, Artico M, Ciccariello M, Manente S, Bragadin M, Toninello A, Agostinelli E (2016) Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids 48:2313–2326.  https://doi.org/10.1007/s00726-016-2323-z PubMedCrossRefGoogle Scholar
  112. Green AR, Mitchell D, Todoff A, Youdim MBH (1977) Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br J Pharmacol 60:343–349PubMedPubMedCentralCrossRefGoogle Scholar
  113. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17:206–210.  https://doi.org/10.1038/ng1097-206 PubMedCrossRefGoogle Scholar
  114. Guimarães JT, Vindis C, Soares-da-Silva P, Parini A (2003) Differential substrate specificity of monoamine oxidase in the rat heart and renal cortex. Life Sci 73:955–967PubMedCrossRefGoogle Scholar
  115. Guzior N, Wieckowska A, Panek D, Malawska B (2015) Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 22:373–404.  https://doi.org/10.2174/0929867321666141106122628 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hall DW, Logan BW, Parsons GH (1969) Further studies on the inhibition of monoamine oxidase by M and B 9302 (clorgyline). I. Substrate specificity in various mammalian species. Biochem Pharmacol 18:1447–1454.  https://doi.org/10.1016/0006-2952(69)90258-5 PubMedCrossRefGoogle Scholar
  117. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A, Snyder SH (2006) Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA 103(10):3887–3889.  https://doi.org/10.1073/pnas.0511321103 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hare ML (1928) Tyramine oxidase: a new enzyme system in liver. Biochem J 22:968–979.  https://doi.org/10.1042/bj0220968 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21.  https://doi.org/10.1196/annals.1354.003 PubMedCrossRefGoogle Scholar
  120. Hasan F, McCrodden JM, Kennedy NP, Tipton KF (1988) The involvement of intestinal monoamine oxidase in the transport and metabolism of tyramine. J Neural Transm Suppl 26:1–9PubMedGoogle Scholar
  121. Holt A, Berry MD, Boulton AA (1994) On the binding of monoamine oxidase inhibitors to some sites distinct from the MAO active site, and effects thereby elicited. Neurotoxicology 25:251–266.  https://doi.org/10.1016/s0161-813x(03)00104-9 CrossRefGoogle Scholar
  122. Horwitz D, Sjoerdsma A (1963) A basis for the use of monoamine oxidase inhibitors in angina pectoris. Ann NY Acad Sci 107:1033–1042PubMedCrossRefGoogle Scholar
  123. Houslay MD, Tipton KF (1973) The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase. Biochem J 135:735–750.  https://doi.org/10.1042/bj1350735 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Houslay MD, Tipton KF (1974) A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. Biochem J 139:645–652.  https://doi.org/10.1042/bj1390645 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Houslay MD, Tipton KF (1975) Rat liver mitochondrial monoamine oxidase. A change in the reaction mechanism on solubilization. Biochem J 145:311–321.  https://doi.org/10.1042/bj1450311 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Houtsmuller EJ, Thornton JA, Stitzer M (2002) Effects of selegiline (l-deprenyl) during smoking and short-term abstinence. Psychopharmacology 163:213–220PubMedCrossRefGoogle Scholar
  127. Hsu YP, Weyler W, Chen S, Sims KB, Rinehart WB, Utterback MC, Powell JF, Breakefield XO (1988) Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem 51:1321–1324.  https://doi.org/10.1042/bj2590407 PubMedCrossRefGoogle Scholar
  128. Huebner CF, Donoghue EM, Plummer AJ, Furness PA (1966) N-methyl-n-2-propynyl-l-indanamine. A potent monoamine oxidase inhibitor. J Med Chem 9:830–832PubMedCrossRefGoogle Scholar
  129. Hunter KR, Boakes AJ, Laurence DR, Stern GM (1970) Monoamine oxidase inhibitors and l-Dopa. Br Med J 3:388.  https://doi.org/10.1136/bmj.3.5719.388 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Husain M, Edmondson DE, Singer TP (1982) Kinetic studies on the catalytic mechanism of liver monoamine oxidase. Biochemistry 21:595–600.  https://doi.org/10.1021/bi00532a028 PubMedCrossRefGoogle Scholar
  131. Huszti Z (1972) Kinetic studies on rat brain monoamine oxidase. Mol Pharmacol 8:385–897PubMedGoogle Scholar
  132. Inoue H, Castagnoli K, Van Der Schyf C, Mabic S, Igarashi K, Castagnoli N Jr (1999) Species-dependent differences in monoamine oxidase A and B-catalyzed oxidation of various C4 substituted 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridinyl derivatives. J Pharmacol Exp Ther 291:856–864PubMedGoogle Scholar
  133. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82.  https://doi.org/10.1080/01616412.2016.1251711 PubMedCrossRefGoogle Scholar
  134. Janssens de Varebeke P, Cavalier R, David-Remacle M, Youdim MBH (1988) Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B. J Neurochem 50:1011–1016.  https://doi.org/10.1111/j.1471-4159.1988.tb10566.x PubMedCrossRefGoogle Scholar
  135. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297.  https://doi.org/10.1016/0006-2952(68)90066-x PubMedCrossRefGoogle Scholar
  136. Jones TZ, Balsa D, Unzeta M, Ramsay RR (2007a) Variations in activity and inhibition with pH: the protonated amine is the substrate for monoamine oxidase, but uncharged inhibitors bind better. J Neural Transm 114:707–712.  https://doi.org/10.1007/s00702-007-0675-y PubMedCrossRefGoogle Scholar
  137. Jones TZ, Giurato L, Guccione S, Ramsay RR (2007b) Interactions of imidazoline ligands with the active site of purified monoamine oxidase A. FEBS J 274:1567–1575.  https://doi.org/10.1111/j.1742-4658.2007.05704.x PubMedCrossRefGoogle Scholar
  138. Kalaria RN, Harik SI (1987) Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. J Neurochem 49:856–864.  https://doi.org/10.1111/j.1471-4159.1987.tb00973.x PubMedCrossRefGoogle Scholar
  139. Kelsoe JR, Ginns EI, Egeland JA, Gerhard DS, Goldstein AM, Bale SJ, Pauls DL, Long RT, Kidd KK, Conte G et al (1989) Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature 342:238–243.  https://doi.org/10.1038/342238a0 PubMedCrossRefGoogle Scholar
  140. Khan FH, Saha M, Chakrabarti S (2001) Dopamine induced protein damage in mitochondrial-synaptosomal fraction of rat brain. Brain Res 895:245–249.  https://doi.org/10.1016/s0006-8993(00)03284-4 PubMedCrossRefGoogle Scholar
  141. Kim D, Lee J, Lee S, Park J, Lee D (2016) Predicting unintended effects of drugs based on off-target tissue effects. Biochem Biophys Res Commun 469:399–404.  https://doi.org/10.1016/j.bbrc.2015.11.095 PubMedCrossRefGoogle Scholar
  142. Kinemuchi H, Arai Y, Oreland L, Tipton KF, Fowler CJ (1982) Time-dependent inhibition of monoamine oxidase by beta-phenethylamine. Biochem Pharmacol 31:959–964.  https://doi.org/10.1016/0006-2952(82)90327-6 PubMedCrossRefGoogle Scholar
  143. Kinemuchi H, Fowler CJ, Tipton KF (1987) The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) and its relevance to Parkinson’s disease. Neurochem Int 11:359–373PubMedCrossRefGoogle Scholar
  144. Kline NS (1958) Clinical experience with iproniazid (Marsilid). J Clin Exp Psychopathol 19(Suppl. 1):72–78 (discussion 78–79) PubMedGoogle Scholar
  145. Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (−)deprenyl. Mech Ageing Dev 46:237–262.  https://doi.org/10.1016/0047-6374(88)90128-5 PubMedCrossRefGoogle Scholar
  146. Knoll J (1992) (−)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. J Am Geriatr Soc 40:839–847.  https://doi.org/10.1111/j.1532-5415.1992.tb01860.x PubMedCrossRefGoogle Scholar
  147. Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408PubMedGoogle Scholar
  148. Knoll J, Miklya I (1994) Multiple, small dose administration of (−)deprenyl enhances catecholaminergic activity and diminishes serotoninergic activity in the brain and these effects are unrelated to MAO-B inhibition. Arch Int Pharmacodyn Ther 328:1–15PubMedGoogle Scholar
  149. Knoll J, Ecsery Z, Magyar K, Sátory E (1978) Novel (−)deprenyl-derived selective inhibitors of B-type monoamine oxidase. The relation of structure to their action. Biochem Pharmacol 27:1739–1747PubMedCrossRefGoogle Scholar
  150. Kopin IJ (1968) False adrenergic transmitters. Annu Rev Pharmacol 8:377–394.  https://doi.org/10.1146/annurev.pa.08.040168.00211 PubMedCrossRefGoogle Scholar
  151. Kotera M, McDonald AG, Boyce S, Tipton KF (2008) Functional group and substructure searching as a tool in metabolomics. PLoS One 3:e1537.  https://doi.org/10.1371/journal.pone.0001537 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Muller D, van Oostrum J, Waldmeier P, Furst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(−)-deprenyl. J Biol Chem 273:5821–5828PubMedCrossRefGoogle Scholar
  153. Krueger MJ, Mazouz F, Ramsay RR, Milcent R, Singer TP (1995) Dramatic species differences in the susceptibility of monoamine oxidase B to a group of powerful inhibitors. Biochem Biophys Res Commun 206:556–562.  https://doi.org/10.1006/bbrc.1995.1079 PubMedCrossRefGoogle Scholar
  154. Langston JW, Ballard P, Tetrad JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.  https://doi.org/10.1126/science.6823561 PubMedCrossRefGoogle Scholar
  155. Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL et al (1996) Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Investig 97:1010–1019.  https://doi.org/10.1172/jci118492 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Long RF, Mantle TJ, Wilson K (1976) Substrate-selective inhibition of monoamine oxidase by some cyclopropylamino substituted oxadiazoles. Biochem Pharmacol 25:247–252PubMedCrossRefGoogle Scholar
  157. Macedo D, Filho AJMC, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HVN, Freitas de Lucena D (2017) Antidepressants, antimicrobials or both? Gut microbiota symbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord 208:22–32.  https://doi.org/10.1016/j.jad.2016.09.012 PubMedCrossRefGoogle Scholar
  158. Magyar K (2011) The pharmacology of selegiline. Int Rev Neurobiol 100:65–84.  https://doi.org/10.1016/b978-0-12-386467-3.00004-2 PubMedCrossRefGoogle Scholar
  159. Malcomson T, Yelekci K, Borrello MT, Ganesan A, Semina E, De Kimpe N, Mangelinckx S, Ramsay RR (2015) cis-Cyclopropylamines as mechanism-based inhibitors of monoamine oxidases. FEBS J 282:3190–3198.  https://doi.org/10.1111/febs.13260 PubMedCrossRefGoogle Scholar
  160. Mann PJ, Quastel JH (1940) Benzedrine (beta-phenylisopropylamine) and brain metabolism. Biochem J 34:414–431PubMedPubMedCentralCrossRefGoogle Scholar
  161. Mantle TJ, Garrett NJ, Tipton KF (1976a) The development of monoamine oxidase in rat liver and brain. FEBS Lett 64:227–230.  https://doi.org/10.1016/0014-5793(76)80289-x PubMedCrossRefGoogle Scholar
  162. Mantle TJ, Tipton KF, Garrett NJ (1976b) Inhibition of monoamine oxidase by amphetamine and related compounds. Biochem Pharmacol 25:2073–2077.  https://doi.org/10.1016/0006-2952(76)90432-9 PubMedCrossRefGoogle Scholar
  163. Marchitti SA, Deitrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59:125–150.  https://doi.org/10.1124/pr.59.2.1 PubMedCrossRefGoogle Scholar
  164. Marconi S, Zwingers T (2014) Comparative efficacy of selegiline versus rasagiline in the treatment of early Parkinson’s disease. Eur Rev Med Pharmacol Sci 18:1879–1882PubMedGoogle Scholar
  165. Maruyama W, Boulton AA, Davis BA, Dostert P, Naoi M (2001) Enantio-specific induction of apoptosis by an endogenous neurotoxin N-methyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J Neural Transm 108:11–24PubMedCrossRefGoogle Scholar
  166. Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdim MB, Naoi M (2002) Neuroprotection by propargylamines in Parkinson's disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682.  https://doi.org/10.1016/s0892-0362(02)00221-0 PubMedCrossRefGoogle Scholar
  167. Marzo A, Dal Bo L, Monti NC, Crivelli F, Ismaili S, Caccia C, Cattaneo C, Fariello RG (2004) Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res 50:77–85PubMedCrossRefGoogle Scholar
  168. Mathew B, Suresh J, Mathew GE, Parasuraman R, Abdulla N (2014) Plant secondary metabolites-potent inhibitors of monoamine oxidase isoforms. Cent Nerv Syst Agents Med Chem 14:28–33.  https://doi.org/10.2174/1871524914666140826111930 PubMedCrossRefGoogle Scholar
  169. Matveychuk D, Nunes E, Ullah N, Aldawsari FS, Velázquez-Martínez CA, Baker GB (2014) Elevation of rat brain tyrosine levels by phenelzine is mediated by its active metabolite β-phenylethylidenehydrazine. Prog Neuropsychopharmacol Biol Psychiatry 53:67–73PubMedCrossRefGoogle Scholar
  170. McDonald AG, Tipton KF (2012) Enzymes: irreversible inhibition. In: Encyclopedia of the life sciences. Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0000601.pub2
  171. McEwen CM Jr, Sasaki G, Lenz WR Jr (1968) Human liver mitochondrial monoamine oxidase. I. Kinetic studies of model interactions. J Biol Chem 243:5217–5225PubMedGoogle Scholar
  172. McManus RM, Mills KH, Lynch MA (2015) T cells-protective or pathogenic in Alzheimer’s disease? J Neuroimmune Pharmacol 10:547–560.  https://doi.org/10.1007/s11481-015-9612-2 PubMedCrossRefGoogle Scholar
  173. Meda F, Rampon C, Dupont E, Gauron C, Mourton A, Queguiner I, Thauvin M, Volovitch M, Joliot A, Vriz S (2017) Nerves, H2O2 and Shh: three players in the game of regeneration. Semin Cell Dev Biol S1084–9521(17):30448–30502Google Scholar
  174. Medvedev AE, Glover V (2004) Tribulin and endogenous MAO-inhibitory regulation in vivo. Neurotoxicology 25:185–192PubMedCrossRefGoogle Scholar
  175. Medvedev A, Igosheva N, Crumeyrolle-Arias M, Glover V (2005) Isatin: role in stress and anxiety. Stress 8:175–183PubMedCrossRefGoogle Scholar
  176. Melzig MF, Putscher I, Henklein P, Haber H (2000) In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate. J Ethnopharmacol 73:153–159.  https://doi.org/10.1016/s0378-8741(00)00291-9 PubMedCrossRefGoogle Scholar
  177. Mihalik J, Kravcuková P, Spakovská T, Mareková M, Schmidtová K (2008) Study of high deprenyl dose on the preimplantation embryo development and lymphocyte DNA in rat. Gen Physiol Biophys 27:121–126PubMedGoogle Scholar
  178. Miller JR, Edmondson DE (1999) Influence of flavin analogue structure on the catalytic activities and flavinylation reactions of recombinant human liver monoamine oxidases A and B. J Biol Chem 274:23515–23525PubMedCrossRefGoogle Scholar
  179. Minkowsky O (1883) Uber Spaltungen im Thierkorper. Naunyn Schmiedebergs Arch Pharmacol 17:445–465.  https://doi.org/10.1007/bf02055591 CrossRefGoogle Scholar
  180. Moran GR, Hoag MR (2017) The enzyme: renalase. Arch Biochem Biophys 632:66–76.  https://doi.org/10.1016/j.abb.2017.05.015 PubMedCrossRefGoogle Scholar
  181. Mousseau DD, Baker GB (2012) Recent developments in the regulation of monoamine oxidase form and function: is the current model restricting our understanding of the breadth of contribution of monoamine oxidase to brain [dys]function? Curr Top Med Chem 12:2163–2176.  https://doi.org/10.2174/1568026611212200005 PubMedCrossRefGoogle Scholar
  182. Murphy DL (1978) Substrate-selective monoamine oxidases-inhibitor, tissue, species and functional differences. Biochem Pharmacol 27:1889–1893.  https://doi.org/10.1016/0006-2952(82)90656-6 PubMedCrossRefGoogle Scholar
  183. Murphy S, Pastuszko A (1994) Effect of neurocatin on the activity of monoamine oxidase B in rat brain synaptosomes. Neurochem Res 19:177–182PubMedCrossRefGoogle Scholar
  184. Murphy DL, Donnelly CH, Richelson E, Fuller RW (1978) N-substituted cyclopropylamines as inhibitors of MAO-A and -B forms. Biochem Pharmacol 27:1767–17699PubMedCrossRefGoogle Scholar
  185. Myers RD (1996) Tetrahydroisoquinolines and alcoholism: where are we today? Alcohol Clin Exp Res 20:498–500.  https://doi.org/10.1111/j.1530-0277.1996.tb01081.x PubMedCrossRefGoogle Scholar
  186. Mytilineou C, Leonardi EK, Radcliffe P, Heinonen EH, Han SK, Werner P, Cohen G, Olanow CW (1998) Deprenyl and desmethylselegiline protect mesencephalic neurons from toxicity induced by glutathione depletion. J Pharmacol Exp Ther 284:700–706PubMedGoogle Scholar
  187. Naoi M, Ishiki R, Nomura Y, Hasegawa S, Nagatsu T (1987) Quinolinic acid: an endogenous inhibitor specific for type B monoamine oxidase in human brain synaptosomes. Neurosci Lett 74:232–236PubMedCrossRefGoogle Scholar
  188. Naoi M, Maruyama W, Nakao N, Ibi T, Sahashi K, Benedetti MS (1988) (R)salsolinol N-methyltransferase activity increases in parkinsonian lymphocytes. Ann Neurol 43:212–216.  https://doi.org/10.1002/ana.410430211 CrossRefGoogle Scholar
  189. Naoi M, Maruyama W, Sasuga S, Deng Y, Dostert P, Ohta S, Takahashi T (1994) Inhibition of type A monoamine oxidase by 2(N)-methyl-6,7-dihydroxyisoquinolinium ions. Neurochem Int 25:475–481PubMedCrossRefGoogle Scholar
  190. Naoi M, Muruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioural studies. Brain Res 709:285–295.  https://doi.org/10.1016/0006-8993(95)01325-3 PubMedCrossRefGoogle Scholar
  191. Naoi M, Muruyama W, Akao Y, Yi H (2002) Dopamine-derived endogenous N-methyl-(R)-salsolinol. Its role in Parkinson’s disease. Neurotoxicol Teratol 24:579–591.  https://doi.org/10.1016/s0892-0362(02)00211-8 PubMedCrossRefGoogle Scholar
  192. Neff NH, Goridis C (1972) Neuronal monoamine oxidase: specific enzyme types and their rates of formation. Adv Biochem Psychopharmacol 5:307–323PubMedGoogle Scholar
  193. Nelson SD, Mitchell JR, Snodgrass WR, Timbrell JA (1978) Hepatotoxicity and metabolism of iproniazid and isopropylhydrazine. J Pharmacol Exp Ther 206:574–585PubMedGoogle Scholar
  194. Nelson DL, Herber A, Petillot Y, Pichat L, Glowinski J, Hamon M (1979) [3H]-Harmaline as a specific ligand for MAO-A from rat and bovine brains. J Neurochem 32:1817–1827PubMedCrossRefGoogle Scholar
  195. Nic a’ Bháird N, McCrodden M, Wheatley AM, Harrington MC, Sullivan Sullivan, Tipton KF (1990) Determination of amines, amine metabolites and some amine metabolizing enzymes by high performance liquid chromatography. Biomed Chromatogr 4:229–233PubMedCrossRefGoogle Scholar
  196. O’Carroll AM, Tipton KF, Sullivan JP, Fowler CJ, Ross SB (1987) Intra- and extrasynaptosomal deamination of dopamine and noradrenaline by the two forms of human brain monoamine oxidase. Implications for the neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in man. Biog Amines 4:165–178Google Scholar
  197. O’Brien EM, Tipton KF, Strolin Benedetti M, Bonsignori A, Marrari P, Dostert P (1991) Is the oxidation of milacemide by monoamine oxidase a major factor in its anticonvulsant actions? Biochem Pharmacol 41:1731–1737.  https://doi.org/10.1016/0006-2952(91)90177-7 PubMedCrossRefGoogle Scholar
  198. O’Brien EM, Tipton KF, McCrodden JM, Youdim MBH (1994) The interactions of milacemide with monoamine oxidase. Biochem Pharmacol 47:617–623.  https://doi.org/10.1016/0006-2952(94)90123-6 PubMedCrossRefGoogle Scholar
  199. O’Brien EM, Dostert P, Tipton KF (1995) Species differences in the interactions of the anticonvulsant milacemide and some analogues with monoamine oxidase-B. Biochem Pharmacol 50:317–324.  https://doi.org/10.1016/0006-2952(95)00145-p PubMedCrossRefGoogle Scholar
  200. O’Carroll AM, Bardsley ME, Tipton KF (1986) The oxidation of adrenaline and noradrenaline by the two forms of monoamine oxidase from human and rat brain. Neurochem Int 8:493–500.  https://doi.org/10.1016/0197-0186(86)90182-8 PubMedCrossRefGoogle Scholar
  201. O’Carroll AM, Anderson MC, Tobbia I, Phillips JP, Tipton KF (1989) Determination of the absolute concentrations of monoamine oxidase A and B in human tissues. Biochem Pharmacol 38:901–905PubMedCrossRefGoogle Scholar
  202. Oi S, Yasunobu KT (1973) Mechanistic aspects of the oxidation of amines by monoamine oxidase. Biochem Biophys Res Commun 53:631–637.  https://doi.org/10.1016/0006-291x(73)90708-0 PubMedCrossRefGoogle Scholar
  203. Oi S, Shimada K, Inamasu M, Yasunobu KT (1970) Mechanistic studies of beef liver mitochondrial amine oxidase XVIII. Amine oxidase. Arch Biochem Biophys 139:28–37.  https://doi.org/10.1016/0003-9861(70)90041-x PubMedCrossRefGoogle Scholar
  204. Oi S, Yasunobu KT, Westley J (1971) The effect of pH on the kinetic parameters and mechanism of beef liver monoamine oxidase. Arch Biochem Biophys 145:557–564.  https://doi.org/10.1016/s0003-9861(71)80015-2 PubMedCrossRefGoogle Scholar
  205. Oja SS, Saransaari P, Esa R, Korpi ER (2017) Neurotoxicity of ammonia. Neurochem Res 42:713–720.  https://doi.org/10.1007/s11064-016-2014-x PubMedCrossRefGoogle Scholar
  206. Olivecrona T, Oreland L (1971) Reassociation of soluble monoamine oxidase with lipid-depleted mitochondria in the presence of phospholipids. Olivecrona T, Oreland L. Biochemistry 10:332–340.  https://doi.org/10.1021/bi00778a021 PubMedCrossRefGoogle Scholar
  207. Oreland L (2004) Platelet monoamine oxidase. Personality and alcoholism: the rise, fall and resurrection. Neurotoxicology 25:79–89PubMedCrossRefGoogle Scholar
  208. Orologas AG, Buckman TD (1986) A comparison of platelet monoamine oxidase activity and phosphatidylserine content between chronic paranoid schizophrenics and normal controls. Neurosci Lett 88:293–298CrossRefGoogle Scholar
  209. Orru R, Aldeco M, Edmondson DE (2013) Do MAO A and MAO B utilize the same mechanism for the C–H bond cleavage step in catalysis? Evidence suggesting differing mechanisms. J Neural Transm 120:847–851PubMedPubMedCentralCrossRefGoogle Scholar
  210. Oxenkrug GF (1999) Antidepressive and antihypertensive effects of MAO-A inhibition: role of N-acetylserotonin. A review. Neurobiology 7:213–224 (Book Chapter) PubMedGoogle Scholar
  211. Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M, García-Sevilla JA (1997) Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liver. Br J Pharmacol 121:901–912.  https://doi.org/10.1038/sj.bjp.0701214 PubMedPubMedCentralCrossRefGoogle Scholar
  212. Palfreyman MG, McDonald IA, Fozard JR, Mely Y, Sleight AJ, Zreika M, Wagner J, Bey P, Lewis PJ (1985) Inhibition of monoamine oxidase selectively in brain monoamine nerves using the bioprecursor (E)-beta-fluoromethylene-m-tyrosine (MDL 72394), a substrate for aromatic l-amino acid decarboxylase. J Neurochem 45:1850–1860.  https://doi.org/10.1111/j.1471-4159.1985.tb10543.x PubMedCrossRefGoogle Scholar
  213. Parkinson Study Group (1996) Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann Neurol 40:99–107CrossRefGoogle Scholar
  214. Parkinson D, Lyles GA, Browne BJ, Callingham BA (1980) Some factors influencing the metabolism of benzylamine by type A and B monoamine oxidase in rat heart and liver. J Pharm Pharmacol 32:844–850.  https://doi.org/10.1111/j.2042-7158.1980.tb13088.x PubMedCrossRefGoogle Scholar
  215. Patek DR, Hellerman L (1974) Mitochondrial monoamine oxidase. Mechanism of inhibition by phenylhydrazine and by aralkylhydrazines. Role of enzymatic oxidation. J Biol Chem 249:2373–2380PubMedGoogle Scholar
  216. Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37:768–778.  https://doi.org/10.1016/j.tips.2016.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Pearce LB, Roth JA (1985) Human brain monoamine oxidase type B: mechanism of deamination as probed by steady-state methods. Biochemistry 24:1821–1826.  https://doi.org/10.1021/bi00329a003 PubMedCrossRefGoogle Scholar
  218. Peretz C, Segev H, Rozan V, Gurevich T, El-Ad B, Judith Tsamir J, Nir Giladi N (2016) Comparison of selegiline and rasagiline therapies in parkinson disease: a real-life study. Clin Neuropharmacol 39:227–231.  https://doi.org/10.1097/wnf.0000000000000167 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 270:27961–27968.  https://doi.org/10.1074/jbc.270.46.27961 PubMedCrossRefGoogle Scholar
  220. Raddatz R, Parini A, Lanier SM (1997) Localization of the imidazoline binding domain on monoamine oxidase B. Mol Pharmacol 52:549–553.  https://doi.org/10.1124/mol.52.4.549 PubMedCrossRefGoogle Scholar
  221. Ramsay RR (1991) Kinetic mechanism of monoamine oxidase (1991). Biochemistry 30:4624–4629.  https://doi.org/10.1021/bi00232a038 PubMedCrossRefGoogle Scholar
  222. Ramsay RR, Tipton KF (2017) Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 22(7):E1192.  https://doi.org/10.3390/molecules22071192 PubMedCrossRefGoogle Scholar
  223. Rebrin I, Geha RM, Chen K, Shih JC (2001) Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B. J Biol Chem 276:29499–29506.  https://doi.org/10.1074/jbc.m100431200 PubMedCrossRefGoogle Scholar
  224. Rebsam A, Seif I, Gaspar P (2005) Dissociating barrel development and lesion-induced plasticity in the mouse somatosensory cortex. J Neurosci 25:706–710PubMedCrossRefGoogle Scholar
  225. Reid AA, Hill JL, Murphy DL (1988) Interactions of tricyclic antidepressant drugs with human and rat monoamine oxidase type B. Naunyn Schmiedebergs Arch Pharmacol 338:678–683PubMedCrossRefGoogle Scholar
  226. Remaury A, Raddatz R, Ordener C, Savic S, Shih JC, Chen K, Seif I, De Maeyer E, Lanier SM, Parini A (2000) Analysis of the pharmacological and molecular heterogeneity of I(2)-imidazoline-binding proteins using monoamine oxidase-deficient mouse models. Mol Pharmacol 58:1085–1090.  https://doi.org/10.1124/mol.58.5.1085 PubMedCrossRefGoogle Scholar
  227. Riederer P, Lachenmayer L (2003) Selegiline’s neuroprotective capacity revisited. J. Neural Transm 110:1273–1278PubMedCrossRefGoogle Scholar
  228. Ringheim GE, Conant K (2004) Neurodegenerative disease and the neuroimmune axis (Alzheimer’s and Parkinson’s disease, and viral infections). J Neuroimmunol 147:43–49.  https://doi.org/10.1016/j.jneuroim.2003.10.013 PubMedCrossRefGoogle Scholar
  229. Rommelspacher H, May T, Salewski B (1994) Harman (1-methyl-beta-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur J Pharmacol 252:51–59PubMedCrossRefGoogle Scholar
  230. Rose RM, Castellani S, Boeringa JA, Malek-Ahmadi P, Lankford DA, Bessman JD, Fritz RR, Denney CB, Denney RM, Abell CW (1986) Platelet MAO concentration and molecular activity: II. Comparison of normal and schizophrenic populations. Psychiatr Res 17:141–151CrossRefGoogle Scholar
  231. Roth JA, Eddy BJ (1980) Kinetic properties of membrane-bound and Triton X-100-solubilized human brain monoamine oxidase. Arch Biochem Biophys 205:260–266.  https://doi.org/10.1016/0003-9861(80)90106-x PubMedCrossRefGoogle Scholar
  232. Sacher J, Houle S, Parkes J, Rusjan P, Sagrati S, Wilson AA, Meyer JH (2011) Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John's wort: an [11C]-harmine PET study. J Psychiatry Neurosci 36:375–382.  https://doi.org/10.1503/jpn.100117 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sandler M, Glover V, Clow A, Elsworth JD (1985) Tribulin: an endogenous monoamine oxidase inhibitor/benzodiazepine receptor ligand. Prog Clin Biol Res 192:359–362PubMedGoogle Scholar
  234. Schlappi B (1985) The lack of hepatotoxicity in the rat with the new reversible MAO-A inhibitor moclobemide in contrast to iproniazid. Arzneimittel Forschung (Drug Research) 35:800–803Google Scholar
  235. Schmiedeberg O (1877) Ueber das Verhältniss des Ammoniaks und der primären Monaminbasen zur Harnstoffbildung im Thierkörper. Naunyn Schmiedebergs Arch Pharmacol 8:1–14.  https://doi.org/10.1007/bf01831350 CrossRefGoogle Scholar
  236. Schoepp DD, Azzaro AJ (1981) Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J Neurochem 36:2025–2031.  https://doi.org/10.1111/j.1471-4159.1981.tb10829.x PubMedCrossRefGoogle Scholar
  237. Schoerlin MP, Da Prada M (1990) Species-specific biotransformation of moclobemide: a comparative study in rats and humans. Acta Psychiatr Scand Suppl 360:108–110PubMedCrossRefGoogle Scholar
  238. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30.  https://doi.org/10.1007/978-3-319-08894-5_2 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Schweitzer JW, Friedhoff AJ, Schwartz R (1975) Letter: chocolate, beta-phenethylamine and migraine re-examined. Nature 257:256PubMedCrossRefGoogle Scholar
  240. Sen NP (1969) Analysis and significance of tyramine in foods. J Food Sci 34:22–26CrossRefGoogle Scholar
  241. Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF (2003) Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity. Br J Cancer 89:1979–1986PubMedPubMedCentralCrossRefGoogle Scholar
  242. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The central nervous system and the gut microbiome. Cell 167:915–932.  https://doi.org/10.1016/j.cell.2016.10.027 PubMedPubMedCentralCrossRefGoogle Scholar
  243. Shi X, Walter NA, Harkness JH, Neve KA, Williams RW, Lu L, Belknap JK, Eshleman AJ, Phillips TJ, Janowsky A (2016) Genetic polymorphisms affect mouse and human trace amine-associated receptor 1 function. PLoS One 11(3):e0152581.  https://doi.org/10.1371/journal.pone.0152581 PubMedPubMedCentralCrossRefGoogle Scholar
  244. Shih JC (2004) Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. Neurotoxicology 25:21–30PubMedCrossRefGoogle Scholar
  245. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Ann Rev Neurosci 22:197–217.  https://doi.org/10.1146/annurev.neuro.22.1.197 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Silverman RB (1995) Radical thoughts about the life of MAO. Prog Brain Res 106:23–31.  https://doi.org/10.1016/s0079-6123(08)61198-x PubMedCrossRefGoogle Scholar
  247. Silverman RB, Zieske PA (1985) Mechanism of inactivation of monoamine oxidase by 1-phenylcyclopropylamine. Biochemistry 24:2128–2138PubMedCrossRefGoogle Scholar
  248. Singer TP, Ramsay RR, Sonsalla PK, Nicklas WJ, Heikkila RE (1993) Biochemical mechanisms underlying MPTP-induced and idiopathic Parkinsonism. New vistas. Adv Neurol 60:300–305PubMedGoogle Scholar
  249. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66.  https://doi.org/10.1016/j.molbrainres.2004.09.017 PubMedCrossRefGoogle Scholar
  250. Smith TE, Weissbach H, Udenfriend S (1963) Studies on monoamine oxidase: the mechanism of inhibition of monoamine oxidase by iproniazid. Biochemistry 2:746–751.  https://doi.org/10.1021/bi00904a021 PubMedCrossRefGoogle Scholar
  251. Squires RF (1972) Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. Adv Biochem Psychopharmacol 5:355–370PubMedGoogle Scholar
  252. Starlinger H (1977) An endogenous inhibitor of amine oxidase (flavine-containing) in the carotid body of the cat. Hoppe Seylers Z Physiol Chem 358:491–497PubMedCrossRefGoogle Scholar
  253. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480.  https://doi.org/10.1038/nrc239 PubMedCrossRefGoogle Scholar
  254. Strolin Benedetti M, Dostert P, Tipton KF (1992) Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Dev Pharmacol Ther 18:191–200PubMedGoogle Scholar
  255. Sullivan JP, Tipton KF (1992) Interactions of the neurotoxin MPTP and its demethylated derivative (PTP) with monoamine oxidase-B. Neurochem Res 17:791–796PubMedCrossRefGoogle Scholar
  256. Swett LR, Martin WB, Taylor JD, Everett GM, Wykes AA, Gladish YC (1963) Structure-activity relations in the pargyline series. Ann N Y Acad Sci 107:891–898PubMedCrossRefGoogle Scholar
  257. Szutowicz A, Tomaszewicz M, Orsulak PJ (1989) Modification of substrate-inhibitor affinities of human platelet monoamine oxidase B in vitro. J Biol Chem 264:17660–17664PubMedGoogle Scholar
  258. Tan AK, Ramsay RR (1993) Substrate-specific enhancement of the oxidative half-reaction of Monoamine-Oxidase. Biochemistry 32:2137–2143.  https://doi.org/10.1021/bi00060a003 PubMedCrossRefGoogle Scholar
  259. Tan AK, Weyler W, Salach JI, Singer TP (1991) Differences in substrate specificities of monoamine oxidase A from human liver and placenta. Biochem Biophys Res Commun 181:1084–1088PubMedCrossRefGoogle Scholar
  260. Taylor JD, Wykes AA, Gladish YC, Martin WB (1960) New inhibitor of monoamine oxidase. Nature 187:941–942PubMedCrossRefGoogle Scholar
  261. Tesson F, Limon-Boulez I, Urban P, Puype M, Vandekerckhove J, Coupry I, Pompon D, Parini A (1995) Localization of I2-imidazoline binding sites on monoamine oxidases. J Biol Chem 270:9856–9861.  https://doi.org/10.1074/jbc.270.17.9856 PubMedCrossRefGoogle Scholar
  262. Thrane VR, Thrane AS, Wang S, Cotrina ML et al (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648.  https://doi.org/10.1038/nm.3400 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Tipton KF (1968) The reaction pathway of pig brain mitochondrial monoamine oxidase. Eur J Biochem 5:316–320.  https://doi.org/10.1111/j.1432-1033.1968.tb00372.x PubMedCrossRefGoogle Scholar
  264. Tipton KF (1980) Kinetic mechanism and enzyme function. Biochem Soc Trans 8:242–245.  https://doi.org/10.1042/bst0080242 PubMedCrossRefGoogle Scholar
  265. Tipton KF, Dixon HBF (1979) Effects of pH on enzymes. Methods Enzymol 63:183–234.  https://doi.org/10.1016/0076-6879(79)63011-2 PubMedCrossRefGoogle Scholar
  266. Tipton KF, Spires IP (1971) The kinetics of phenethylhydrazine oxidation by monoamine oxidase. Biochem J 125:521–524.  https://doi.org/10.1042/bj1250521 PubMedPubMedCentralCrossRefGoogle Scholar
  267. Tipton KF, Fowler CJ, McCrodden JM, Strolin Benedetti M (1983) The enzyme-activated irreversible inhibition of type-B monoamine oxidase by 3-(4-[(3-chlorophenyl)methoxy]phenyl)-5-[(methylamino) methyl]-2-oxazolidinone methanesulphonate (compound MD 780236) and the enzyme-catalysed oxidation of this compound as competing reactions. Biochem J 209:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  268. Tipton KF, McCrodden JM, Youdim MBH (1986) Oxidation and enzyme-activated irreversible inhibition of rat liver monoamine oxidase-B by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem J 240:379–383PubMedPubMedCentralCrossRefGoogle Scholar
  269. Tipton KF, O’Sullivan MI, Davey GP, O’Sullivan J (2003) It can be a complicated life being an enzyme. Biochem Soc Trans 31:711–771.  https://doi.org/10.1042/bst0310711 PubMedCrossRefGoogle Scholar
  270. Tipton KF, Davey G, Motherway M (2006) Monoamine oxidase assays. Curr Protoc Toxicol 30, Chapter 4: Unit4.21, pp 1–43.  https://doi.org/10.1002/0471141755.tx0421s30
  271. Tipton KF, Davey GP, McDonald AG (2011) Kinetic behavior and reversible inhibition of monoamine oxidases–enzymes that many want dead. Int Rev Neurobiol 100:43–64.  https://doi.org/10.1016/b978-0-12-386467-3.00003-0 PubMedCrossRefGoogle Scholar
  272. Toyoshima Y, Kinemuchi H, Kamijo K (1979) Nonexistence of a type C monoamine oxidase in rat brain. J Neurochem 32:1183–1189PubMedCrossRefGoogle Scholar
  273. Unzeta M, Castro J, Gomez N, Tipton KF (1983) Comparisons between the monoamine oxidase activities associated with mitochondria and microsomes in rat liver. M. Br J Pharmacol 80:662P (Abstract) Google Scholar
  274. Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MB, Tipton KF, Marco-Contelles J (2016) Multi-target directed donepezil-like ligands for Alzheimer’s disease. Front Neurosci 25(10):205.  https://doi.org/10.3389/fnins.2016.00205 Google Scholar
  275. Upadhyay AK, Borbat PP, Wang J, Freed JH, Edmondson DE (2008) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-d-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47:1554–1566.  https://doi.org/10.1021/bi7021377 PubMedCrossRefGoogle Scholar
  276. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84.  https://doi.org/10.1023/b:mcbi.0000049134.69131.89 PubMedCrossRefGoogle Scholar
  277. Vazquez ML, Silverman RB (1985) Revised mechanism for inactivation of mitochondrial monoamine oxidase by N-cyclopropylbenzylamine. Biochemistry 24:6538–6543PubMedCrossRefGoogle Scholar
  278. Vilar S, Quezada E, Uriarte E, Costanzi S, Borges F, Viña D, Hripcsak G (2016) Computational drug target screening through protein interaction profiles. Sci Rep 15(6):36969.  https://doi.org/10.1038/srep36969 CrossRefGoogle Scholar
  279. Waldmeier PC (1993) Newer aspects of the reversible inhibitor of MAO-A and serotonin reuptake, brofaromine. Prog Neuropsychopharmacol Biol Psychiatry 17:183–198PubMedCrossRefGoogle Scholar
  280. Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT, Chu CY, Billett E, Kuhn H, Ufer C (2011) Monoamine oxidase A expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286:28322–28330.  https://doi.org/10.1074/jbc.m111.241422 PubMedPubMedCentralCrossRefGoogle Scholar
  281. Wang CC, Man GC, Chu CY, Borchert A, Ugun-Klusek A, Billett EE, Kühn H, Ufer C (2014) Serotonin receptor 6 mediates defective brain development in monoamine oxidase A-deficient mouse embryos. J Biol Chem 289:8252–8263.  https://doi.org/10.1074/jbc.m113.522094 PubMedPubMedCentralCrossRefGoogle Scholar
  282. Wassermann AM, Lounkine E, Urban L, Whitebread S, Chen S, Hughes K, Guo H, Kutlina E, Fekete A, Klumpp M, Glick M (2014) A screening pattern recognition method finds new and divergent targets for drugs and natural products. ACS Chem Biol 9:1622–1631.  https://doi.org/10.1021/cb5001839 PubMedCrossRefGoogle Scholar
  283. Weinreb O, Amit T, Riederer P, Youdim MB, Mandel SA (2011) Neuroprotective profile of the multitarget drug rasagiline in Parkinson’s disease. Int Rev Neurobiol 100:127–149.  https://doi.org/10.1016/b978-0-12-386467-3.00007-8 PubMedCrossRefGoogle Scholar
  284. Weinreb O, Mandel S, Youdim MB, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64.  https://doi.org/10.1016/j.freeradbiomed.2013.01.017 PubMedCrossRefGoogle Scholar
  285. Weissbach H, Redfield BG, Udenfriend S (1957) Soluble monoamine oxidase; its properties and actions on serotonin. J Biol Chem 229:953–963PubMedGoogle Scholar
  286. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456.  https://doi.org/10.1016/0306-4522(88)90250-3 PubMedCrossRefGoogle Scholar
  287. Weyler W, Hsu YP, Breakefield XO (1990) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 47:391–417.  https://doi.org/10.1016/0163-7258(90)90064-9 PubMedCrossRefGoogle Scholar
  288. Whitaker-Azmitia PM, Zhang X, Clarke C (1994) Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behavioral and neurochemical studies. Neuropsychopharmacology. 11:125–132.  https://doi.org/10.1038/npp.1994.42 PubMedCrossRefGoogle Scholar
  289. Williams CH (1974) Monoamine oxidase. I. Specificity of some substrates and inhibitors. Biochem Pharmacol 23:615–628.  https://doi.org/10.1016/0006-2952(74)90626-1 PubMedCrossRefGoogle Scholar
  290. Wise CD, Potkin S, Bridge P, Wyatt RJ (1979) An endogenous inhibitor of platelet MAO activity in chronic schizophrenia: failure to replicate. Am J Psychiatry 197136:1336–1337Google Scholar
  291. Woo JCG, Silverman RB (1995) Monoamine oxidase B catalysis in low aqueous medium. Direct evidence for an imine product. J Am Chem Soc 117:1663–1664.  https://doi.org/10.1021/ja00110a033 CrossRefGoogle Scholar
  292. Worland PJ, Ilett KF (1983) Intestinal contribution to the presystemic elimination of beta-phenethylamine in the rat. J Pharm Pharmacol 35:636–640PubMedCrossRefGoogle Scholar
  293. Wu Y, Kazumura K, Maruyama W, Osawa T, Naoi M (2015) Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection. J Neural Transm 122:1399–1407.  https://doi.org/10.1007/s00702-015-1398-0 PubMedCrossRefGoogle Scholar
  294. Yelekçi K, Karahan O, Toprakçi M (2007) Docking of novel reversible monoamine oxidase-B inhibitors: efficient prediction of ligand binding sites and estimation of inhibitors thermodynamic properties. J Neural Transm 114:725–732.  https://doi.org/10.1007/s00702-007-0679-7 PubMedCrossRefGoogle Scholar
  295. Yera ER, Cleves AE, Jain AN (2011) Chemical structural novelty: on-targets and off-targets. J Med Chem 54:6771–6785.  https://doi.org/10.1021/jm200666a PubMedPubMedCentralCrossRefGoogle Scholar
  296. Yoshida T, Yamada Y, Yamamoto T, Kuroiwa Y (1986) Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 16:129–136.  https://doi.org/10.3109/00498258609043515 PubMedCrossRefGoogle Scholar
  297. Youdim MBH, Tipton KF (2002) Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson’s disease. Parkinsonism Relat Disord 8:247–253PubMedCrossRefGoogle Scholar
  298. Youdim MBH, Weinstock M (2004) Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology 25:243–250.  https://doi.org/10.1016/s0161-813x(03)00103-7 PubMedCrossRefGoogle Scholar
  299. Youdim MBH, Aronson JK, Blau K, Green AR, Grahame-Smith DG (1979) Tranylcypromine (‘Parnate’) overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasm. Psychol Med 9:377–382PubMedCrossRefGoogle Scholar
  300. Youdim MBH, Finberg JPM, Tipton KF (1988) Monoamine oxidase. In: Trendelenburg U, Weiner N (eds) Catecholamine II. Handbook of experimental pharmacology. Springer, Berlin, pp 127–199 (Book Chapter) Google Scholar
  301. Youdim MBH, Banerjee DK, Kelner K, Offutt L, Pollard HB (1989) Steroid regulation of monoamine oxidase activity in the adrenal medulla. FASEB J 3:1753–1759.  https://doi.org/10.1096/fasebj.3.6.2495232 PubMedCrossRefGoogle Scholar
  302. Youdim MBH, Gross A, Finberg JP (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506PubMedPubMedCentralCrossRefGoogle Scholar
  303. Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309.  https://doi.org/10.1038/nrn1883 PubMedCrossRefGoogle Scholar
  304. Yu PH, Davis BA (1988) Stereospecific deamination of benzylamine catalyzed by different amine oxidases. Int J Biochem 20:1197–1201PubMedCrossRefGoogle Scholar
  305. Yu PH, Tipton KF (1989) Deuterium isotope effect of phenelzine on the inhibition of rat liver mitochondrial monoamine oxidase activity. Biochem Pharmacol 38:4245–4251.  https://doi.org/10.1016/0006-2952(89)90522-4 PubMedCrossRefGoogle Scholar
  306. Zeller EA (1938) Über den enzymatischen Abbau von Histamin und Diaminen. 2. Mitteilung. Helv Chim Acta 21:880–890.  https://doi.org/10.1002/hlca.193802101115 CrossRefGoogle Scholar
  307. Zeller EA, Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-isopropyl hydrazine. Proc Soc Exp Biol Med 81:459–461.  https://doi.org/10.3181/00379727-81-19910 PubMedCrossRefGoogle Scholar
  308. Zeller P, Pletscher A, Gey KF, Gutmann H, Hegedüs B, Straub O (1959) Amino acid and fatty acid hydrazides: chemistry and action on monoamine oxidase. Ann N Y Acad Sci 80:555–567.  https://doi.org/10.1111/j.1749-6632.1959.tb49234.x PubMedCrossRefGoogle Scholar
  309. Zhuang ZP, Marks B, McCauley RB (1992) The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria. J Biol Chem 267:591–596PubMedGoogle Scholar
  310. Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149:967–978.  https://doi.org/10.1038/sj.bjp.0706948 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biochemistry and ImmunologyTrinity CollegeDublin 2Ireland

Personalised recommendations