Skip to main content
Log in

Neuroinflammation in l-DOPA-induced dyskinesia: beyond the immune function

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Neuroinflammation is a main component of Parkinson’s disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following l-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of l-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonini A, Fung VSC, Boyd JT, Slevin JT, Hall C, Chatamra K, Eaton S, Benesh JA (2016) Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord 31:530–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 31:1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57(6):804–812

    Article  PubMed  CAS  Google Scholar 

  • Balosso S, Ravizza T, Pierucci M, Calcagno E, Invernizzi R, Di Giovanni G, Esposito E, Vezzani A (2009) Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: implications for seizure susceptibility. Neuroscience 161(1):293–300

    Article  PubMed  CAS  Google Scholar 

  • Barcia C, Hunot S, Guillemin GJ, Pitossi F (2011) Inflammation and Parkinson’s disease. Parkinsons Dis 2011:729054

    PubMed  PubMed Central  Google Scholar 

  • Barnum CJ, Eskow KL, Dupre K, Blandino P Jr, Deak T, Bishop C (2008) Exogenous corticosterone reduces l-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience 156:30–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNF alpha. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Bishop C, George JA, Buchta W, Goldenberg AA, Mohamed M, Dickinson SO, Eissa S, Eskow Jaunarajs KL (2012) Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats. Eur J Neurosci 36(6):2839–2848

    Article  PubMed  PubMed Central  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neuroscience 172(1–2):151–154

    CAS  Google Scholar 

  • Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015a) Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387

    Article  PubMed  CAS  Google Scholar 

  • Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015b) Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by l-DOPA? Philos Trans R Soc Lond B Biol Sci 370:1672

    Article  Google Scholar 

  • Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64(1):93–109. https://doi.org/10.1016/j.neuron.2009.09.001

    Article  PubMed  CAS  Google Scholar 

  • Boulanger LM, Huh GS, Shatz CJ (2001) Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 11(5):568–578

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9(11):1106–1117

    Article  PubMed  CAS  Google Scholar 

  • Carta M, Bezard E (2011) Contribution of pre-synaptic mechanisms to l-DOPA-induced dyskinesia. Neuroscience 198:245–251

    Article  PubMed  CAS  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(7):1819–1833

    Article  PubMed  Google Scholar 

  • Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E (2011) Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-α production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194:250–261

    Article  PubMed  CAS  Google Scholar 

  • Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E (2017) DOPA-induceddyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 45(1):73–91

    Article  PubMed  Google Scholar 

  • Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29(11):3442–3452

    Article  PubMed  CAS  Google Scholar 

  • Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datla KP, Blunt SB, Dexter DT (2001) Chronic l-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord 16:424–434

    Article  PubMed  CAS  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Bortolanza M, Tumas V, Aguiar AS Jr, Raisman-Vozari R, Prediger RD (2015) Nitric oxide, a new player in l-DOPA-induced dyskinesia? Front Biosci 7:168–192

    Article  Google Scholar 

  • Diaz NL, Waters CH (2009) Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev Neurother 9:1781–1789

    Article  PubMed  CAS  Google Scholar 

  • Dos-Santos-Pereira M, da Silva CA, Guimarães FS, Del-Bel E (2016) Co-administration of cannabidiol and capsazepine reduces l-DOPA-induced dyskinesia in mice: possible mechanism of action. Neurobiol Dis 94:179–195

    Article  PubMed  CAS  Google Scholar 

  • Dziewczapolski G, Murer MG, Agid Y, Gershanik O, RaismanVozari R (1997) Absence of neurotoxicity of chronic l-DOPA in 6-hydroxydopamine-lesioned rats. NeuroReport 8:975–979

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Parkinson Study Group (2005) Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol 252:IV37–IV42

    Article  PubMed  Google Scholar 

  • Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, Dovero S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with l-dopa-induced dyskinesia. Proc Natl Acad Sci USA 107:21824–21829

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Calle R, Vicente-Rodríguez M, Gramage E, de la Torre-Ortiz C, Pérez-García C, Ramos MP, Herradón G (2017) Endogenous pleiotrophin and midkine regulate LPS-induced glial responses. Neurosci Lett 662:213–218

    Article  PubMed  Google Scholar 

  • Ferrario JE, Delfino MA, Stefano AV, Zbarsky V, Douhou A, Murer MG, Raisman-Vozari R, Gershanik OS (2003) Effects of orally administered levodopa on mesencephalic dopaminergic neurons undergoing a degenerative process. Neurosci Res 47:431–436

    Article  PubMed  CAS  Google Scholar 

  • Ferrario JE, Taravini IR, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R, Murer MG, Ruberg M et al (2004) Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. J Neurochem 90:1348–1358

    Article  PubMed  CAS  Google Scholar 

  • Feyder M, Bonito-Oliva A, Fisone G (2011) l-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fidalgo C, Ko WK, Tronci E, Li Q, Stancampiano R, Chuan Q, Bezard E, Carta M (2015) Effect of serotonin transporter blockade on l-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neuroscience 298:389–396

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in l-DOPA induced dyskinesia. J Neurosci 26:2914–2922

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gerhard A (2016) TSPO imaging in parkinsonian disorders. Clin Transl Imaging 4:183–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil SJ, Park CH, Lee JE, Minn YK, Koh HC (2011) Positive association between striatal serotonin level and abnormal involuntary movements in chronic l-DOPA-treated hemiparkinsonian rats. Brain Res Bull 84(2):151–156

    Article  PubMed  CAS  Google Scholar 

  • Gu F, Chauhan V, Chauhan A (2015) Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 18:89–95

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    Article  PubMed  Google Scholar 

  • Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A (2015) Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163(7):1730–1741. https://doi.org/10.1016/j.cell.2015.11.023

    Article  PubMed  CAS  Google Scholar 

  • Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with l-DOPA-induced dyskinesia. J Neurochem 142(5):756–766

    Article  PubMed  CAS  Google Scholar 

  • Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  PubMed  CAS  Google Scholar 

  • Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75

    Article  PubMed  CAS  Google Scholar 

  • Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bedard PJ, Di Paolo T, Julien P, Calon F (2006) Postmortem brain fatty acid pro- file of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404–414

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Lee HW, Hwang J, Kim J, Leem MJ, Han HS, Lee WH, Suk K (2012) Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol Aging 33(9):2145–2159

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP (2002) Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord 8(5):329–341

    Article  PubMed  CAS  Google Scholar 

  • Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, Christopher L, Hamani C, Lang AE, Wilson AA, Houle S, Strafella AP (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS One 10(9):e0138721

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Yang HJ, Kim JM, Jeon BS (2013) Novel GCH-1 mutations and unusual long-lasting dyskinesias in Korean families with dopa-responsive dystonia. Parkinsonism Relat Disord 19(12):1156–1159

    Article  PubMed  Google Scholar 

  • Leonoudakis D, Braithwaite SP, Beattie MS, Beattie EC (2004) TNFalpha-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol 1(3):263–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D (2014) An adaptive role of TNFa in the regulation of striatal synapses. J Neurosci 34:6146–6155

    Article  PubMed  CAS  Google Scholar 

  • Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB (2011) l-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson’s disease? Prog Neurobiol 94:389–407

    Article  PubMed  CAS  Google Scholar 

  • López González I, Garcia-Esparcia P, Llorens F, Ferrer I (2016) Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt–Jakob and tauopathies. Int J Mol Sci 17(2):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15(1):120–132

    Article  PubMed  CAS  Google Scholar 

  • Lundblad M, Usiello A, Carta M, Håkansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Exp Neurol 194(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Marin I, Kipnis J (2013) Learning and memory… and the immune system. Learn Mem 20(10):601–606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR et al (2015) Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA- lesioned rats. Neurobiol Dis 74:295–304

    Article  PubMed  CAS  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflamm 5:45

    Article  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  • Mena MA, Casarejos MJ, Carazo A, Paıno CL, Garcıa de Yebenes J (1997) Glia protect fetal midbrain dopamine neurons in culture from l-DOPA toxicity through multiple mechanisms. J Neural Transm 104:317–328

    Article  PubMed  CAS  Google Scholar 

  • Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30(4):297–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7(1):42–59

    Article  PubMed  Google Scholar 

  • Mulas G, Espa E, Fenu S, Spiga S, Cossu G, Pillai E, Carboni E, Simbula G, Jadžić D, Angius F, Spolittu S, Batetta B, Lecca D, Giuffrida A, Carta AR (2016) Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l-DOPA delivery in the 6-OHDA model of Parkinson’s disease. Exp Neurol 286:83–92

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (2015) Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov Disord 30:37–44

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, Vanagunas A, Othman AA, Widnell KL, Robieson WZ, Pritchett Y, Chatamra K, Benesh J, Lenz RA, Antonini A (2014) Continuous intrajejunal infusion of levo- dopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13:141–149

    Article  PubMed  CAS  Google Scholar 

  • Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231. https://doi.org/10.1155/2014/861231

    Article  CAS  Google Scholar 

  • Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Männistö PT, Hong JS (2011) Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology 61(4):574–582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouchi Y, Yagi S, Yokokura M, Sakamoto M (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S200–S204

    Article  PubMed  Google Scholar 

  • Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA induced dyskinesia. Nat Neurosci 6:501–506

    Article  PubMed  CAS  Google Scholar 

  • Pisanu A, Lecca D, Mulas Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291

    Article  PubMed  CAS  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  PubMed  CAS  Google Scholar 

  • Pons R, Syrengelas D, Youroukos S, Orfanou I, Dinopoulos A, Cormand B, Ormazabal A, Garzía-Cazorla A, Serrano M, Artuch R (2013) Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 28(8):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Pribiag H, Stellwagen D (2014) Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78:13–22

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D (2012a) Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71(1):76–83

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Studer V, Motta C, De Chiara V, Barbieri F, Bernardi G, Centonze D (2012b) Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler 18:1633–1635

    Article  PubMed  CAS  Google Scholar 

  • Ryan BJ, Lourenço-Venda LL, Crabtree MJ, Hale AB, Channon KM, Wade-Martins R (2014) α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease. Free Radic Biol Med 67:58–68

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Kaufman S, Milstien S (1995) Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J Neurochem 65:895–902

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Volterra A (2012) TNFα in synaptic function: switching gears. Trends Neurosci 35(10):638–647

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69(5):988–1001. https://doi.org/10.1016/j.neuron.2011.02.003

    Article  PubMed  CAS  Google Scholar 

  • Santini E, Valjent Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J Neurosci 27:6995–7005

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    Article  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  PubMed  CAS  Google Scholar 

  • Silver K, Desormaux A, Freeman LC, Lillich JD (2012) Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs. Growth Factors 30(4):258–266

    Article  PubMed  CAS  Google Scholar 

  • Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, Bezard E, Brotchie JM (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64:177–180

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. Neuroscience 25:3219–3228

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  PubMed  CAS  Google Scholar 

  • Tassin J, Dürr A, Bonnet AM, Gil R, Vidailhet M, Lücking CB, Goas JY, Durif F, Abada M, Echenne B, Motte J, Lagueny A, Lacomblez L, Jedynak P, Bartholomé B, Agid Y, Brice A (2000) Levodopa-responsive dystonia. GTP cyclohydrolase I or parkin mutations? Brain 123(Pt 6):1112–1121

    Article  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  PubMed Central  Google Scholar 

  • Tronci E, Lisci C, Stancampiano R, Fidalgo C, Collu M, Devoto P, Carta M (2013) 5-Hydroxy-tryptophan for the treatment of l-DOPA-induced dyskinesia in the rat Parkinson’s disease model. Neurobiol Dis 60:108–114

    Article  PubMed  CAS  Google Scholar 

  • Tronci E, Napolitano F, Muñoz A, Fidalgo C, Rossi F, Björklund A, Usiello A, Carta M (2017) BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Exp Neurol 297:73–81

    Article  PubMed  CAS  Google Scholar 

  • Tronel C, Largeau B, Ribeiro MS, Guilloteau D, Dupont AC, Arlicot N (2017) Molecular targets for PET imaging of activated microglia: the current situation and future expectations. Int J Mol Sci 18(12):802

    Article  PubMed Central  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vann LR, Payne SG, Edsall LC, Twitty S, Spiegel S, Milstien S (2002) Involvement of sphingosine kinase in TNF-α-stimulated tetrahydrobiopterin biosynthesis in C6 glioma Ccells. J Biol Chem 277(15):12649–12656

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82. https://doi.org/10.1016/j.neuropharm.2014.10.027

    Article  PubMed  CAS  Google Scholar 

  • Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74(2):457–471

    Article  PubMed  CAS  Google Scholar 

  • Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36(10):605–613. https://doi.org/10.1016/j.it.2015.08.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31(10):2121–2131

    PubMed  CAS  Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Carta.

Additional information

This paper is dedicated to the memory of our wonderful and unforgettable colleague, Dr. Sandro Fenu, who recently passed away.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisanu, A., Boi, L., Mulas, G. et al. Neuroinflammation in l-DOPA-induced dyskinesia: beyond the immune function. J Neural Transm 125, 1287–1297 (2018). https://doi.org/10.1007/s00702-018-1874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-018-1874-4

Keywords

Navigation