Advertisement

Journal of Neural Transmission

, Volume 125, Issue 8, pp 1287–1297 | Cite as

Neuroinflammation in l-DOPA-induced dyskinesia: beyond the immune function

  • Augusta Pisanu
  • Laura Boi
  • Giovanna Mulas
  • Saturnino Spiga
  • Sandro Fenu
  • Anna R. Carta
Neurology and Preclinical Neurological Studies - Review Article

Abstract

Neuroinflammation is a main component of Parkinson’s disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following l-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of l-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.

Keywords

Cytokine Dyskinesia Inflammation Parkinson Microglia 

References

  1. Antonini A, Fung VSC, Boyd JT, Slevin JT, Hall C, Chatamra K, Eaton S, Benesh JA (2016) Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord 31:530–537PubMedPubMedCentralGoogle Scholar
  2. Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 31:1337–1347PubMedGoogle Scholar
  3. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57(6):804–812PubMedGoogle Scholar
  4. Balosso S, Ravizza T, Pierucci M, Calcagno E, Invernizzi R, Di Giovanni G, Esposito E, Vezzani A (2009) Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: implications for seizure susceptibility. Neuroscience 161(1):293–300PubMedGoogle Scholar
  5. Barcia C, Hunot S, Guillemin GJ, Pitossi F (2011) Inflammation and Parkinson’s disease. Parkinsons Dis 2011:729054PubMedPubMedCentralGoogle Scholar
  6. Barnum CJ, Eskow KL, Dupre K, Blandino P Jr, Deak T, Bishop C (2008) Exogenous corticosterone reduces l-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience 156:30–41PubMedPubMedCentralGoogle Scholar
  7. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNF alpha. Science 295:2282–2285PubMedGoogle Scholar
  8. Bishop C, George JA, Buchta W, Goldenberg AA, Mohamed M, Dickinson SO, Eissa S, Eskow Jaunarajs KL (2012) Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats. Eur J Neurosci 36(6):2839–2848PubMedPubMedCentralGoogle Scholar
  9. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neuroscience 172(1–2):151–154Google Scholar
  10. Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015a) Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387PubMedGoogle Scholar
  11. Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015b) Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by l-DOPA? Philos Trans R Soc Lond B Biol Sci 370:1672Google Scholar
  12. Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64(1):93–109.  https://doi.org/10.1016/j.neuron.2009.09.001 PubMedGoogle Scholar
  13. Boulanger LM, Huh GS, Shatz CJ (2001) Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 11(5):568–578PubMedGoogle Scholar
  14. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9(11):1106–1117PubMedGoogle Scholar
  15. Carta M, Bezard E (2011) Contribution of pre-synaptic mechanisms to l-DOPA-induced dyskinesia. Neuroscience 198:245–251PubMedGoogle Scholar
  16. Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(7):1819–1833PubMedGoogle Scholar
  17. Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E (2011) Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-α production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194:250–261PubMedGoogle Scholar
  18. Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E (2017) DOPA-induceddyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 45(1):73–91PubMedGoogle Scholar
  19. Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29(11):3442–3452PubMedGoogle Scholar
  20. Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570PubMedPubMedCentralGoogle Scholar
  21. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56PubMedPubMedCentralGoogle Scholar
  22. Datla KP, Blunt SB, Dexter DT (2001) Chronic l-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord 16:424–434PubMedGoogle Scholar
  23. Del-Bel E, Padovan-Neto FE, Bortolanza M, Tumas V, Aguiar AS Jr, Raisman-Vozari R, Prediger RD (2015) Nitric oxide, a new player in l-DOPA-induced dyskinesia? Front Biosci 7:168–192Google Scholar
  24. Diaz NL, Waters CH (2009) Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev Neurother 9:1781–1789PubMedGoogle Scholar
  25. Dos-Santos-Pereira M, da Silva CA, Guimarães FS, Del-Bel E (2016) Co-administration of cannabidiol and capsazepine reduces l-DOPA-induced dyskinesia in mice: possible mechanism of action. Neurobiol Dis 94:179–195PubMedGoogle Scholar
  26. Dziewczapolski G, Murer MG, Agid Y, Gershanik O, RaismanVozari R (1997) Absence of neurotoxicity of chronic l-DOPA in 6-hydroxydopamine-lesioned rats. NeuroReport 8:975–979PubMedGoogle Scholar
  27. Fahn S, Parkinson Study Group (2005) Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol 252:IV37–IV42PubMedGoogle Scholar
  28. Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, Dovero S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with l-dopa-induced dyskinesia. Proc Natl Acad Sci USA 107:21824–21829PubMedGoogle Scholar
  29. Fernández-Calle R, Vicente-Rodríguez M, Gramage E, de la Torre-Ortiz C, Pérez-García C, Ramos MP, Herradón G (2017) Endogenous pleiotrophin and midkine regulate LPS-induced glial responses. Neurosci Lett 662:213–218PubMedGoogle Scholar
  30. Ferrario JE, Delfino MA, Stefano AV, Zbarsky V, Douhou A, Murer MG, Raisman-Vozari R, Gershanik OS (2003) Effects of orally administered levodopa on mesencephalic dopaminergic neurons undergoing a degenerative process. Neurosci Res 47:431–436PubMedGoogle Scholar
  31. Ferrario JE, Taravini IR, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R, Murer MG, Ruberg M et al (2004) Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. J Neurochem 90:1348–1358PubMedGoogle Scholar
  32. Feyder M, Bonito-Oliva A, Fisone G (2011) l-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71PubMedPubMedCentralGoogle Scholar
  33. Fidalgo C, Ko WK, Tronci E, Li Q, Stancampiano R, Chuan Q, Bezard E, Carta M (2015) Effect of serotonin transporter blockade on l-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neuroscience 298:389–396PubMedGoogle Scholar
  34. Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in l-DOPA induced dyskinesia. J Neurosci 26:2914–2922PubMedGoogle Scholar
  35. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432PubMedGoogle Scholar
  36. Gerhard A (2016) TSPO imaging in parkinsonian disorders. Clin Transl Imaging 4:183–190PubMedPubMedCentralGoogle Scholar
  37. Gil SJ, Park CH, Lee JE, Minn YK, Koh HC (2011) Positive association between striatal serotonin level and abnormal involuntary movements in chronic l-DOPA-treated hemiparkinsonian rats. Brain Res Bull 84(2):151–156PubMedGoogle Scholar
  38. Gu F, Chauhan V, Chauhan A (2015) Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 18:89–95PubMedGoogle Scholar
  39. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23PubMedGoogle Scholar
  40. Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A (2015) Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163(7):1730–1741.  https://doi.org/10.1016/j.cell.2015.11.023 PubMedGoogle Scholar
  41. Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with l-DOPA-induced dyskinesia. J Neurochem 142(5):756–766PubMedGoogle Scholar
  42. Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195PubMedGoogle Scholar
  43. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376PubMedGoogle Scholar
  44. Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75PubMedGoogle Scholar
  45. Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bedard PJ, Di Paolo T, Julien P, Calon F (2006) Postmortem brain fatty acid pro- file of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404–414PubMedGoogle Scholar
  46. Kim JH, Lee HW, Hwang J, Kim J, Leem MJ, Han HS, Lee WH, Suk K (2012) Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol Aging 33(9):2145–2159PubMedGoogle Scholar
  47. Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP (2002) Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord 8(5):329–341PubMedGoogle Scholar
  48. Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, Christopher L, Hamani C, Lang AE, Wilson AA, Houle S, Strafella AP (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS One 10(9):e0138721PubMedPubMedCentralGoogle Scholar
  49. Lee JY, Yang HJ, Kim JM, Jeon BS (2013) Novel GCH-1 mutations and unusual long-lasting dyskinesias in Korean families with dopa-responsive dystonia. Parkinsonism Relat Disord 19(12):1156–1159PubMedGoogle Scholar
  50. Leonoudakis D, Braithwaite SP, Beattie MS, Beattie EC (2004) TNFalpha-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol 1(3):263–273PubMedPubMedCentralGoogle Scholar
  51. Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D (2014) An adaptive role of TNFa in the regulation of striatal synapses. J Neurosci 34:6146–6155PubMedGoogle Scholar
  52. Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB (2011) l-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson’s disease? Prog Neurobiol 94:389–407PubMedGoogle Scholar
  53. López González I, Garcia-Esparcia P, Llorens F, Ferrer I (2016) Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt–Jakob and tauopathies. Int J Mol Sci 17(2):206PubMedPubMedCentralGoogle Scholar
  54. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15(1):120–132PubMedGoogle Scholar
  55. Lundblad M, Usiello A, Carta M, Håkansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Exp Neurol 194(1):66–75PubMedGoogle Scholar
  56. Marin I, Kipnis J (2013) Learning and memory… and the immune system. Learn Mem 20(10):601–606PubMedPubMedCentralGoogle Scholar
  57. Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR et al (2015) Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA- lesioned rats. Neurobiol Dis 74:295–304PubMedGoogle Scholar
  58. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflamm 5:45Google Scholar
  59. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483PubMedGoogle Scholar
  60. Mena MA, Casarejos MJ, Carazo A, Paıno CL, Garcıa de Yebenes J (1997) Glia protect fetal midbrain dopamine neurons in culture from l-DOPA toxicity through multiple mechanisms. J Neural Transm 104:317–328PubMedGoogle Scholar
  61. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30(4):297–306PubMedPubMedCentralGoogle Scholar
  62. Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97PubMedGoogle Scholar
  63. Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7(1):42–59PubMedGoogle Scholar
  64. Mulas G, Espa E, Fenu S, Spiga S, Cossu G, Pillai E, Carboni E, Simbula G, Jadžić D, Angius F, Spolittu S, Batetta B, Lecca D, Giuffrida A, Carta AR (2016) Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l-DOPA delivery in the 6-OHDA model of Parkinson’s disease. Exp Neurol 286:83–92PubMedGoogle Scholar
  65. Olanow CW (2015) Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov Disord 30:37–44PubMedGoogle Scholar
  66. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, Vanagunas A, Othman AA, Widnell KL, Robieson WZ, Pritchett Y, Chatamra K, Benesh J, Lenz RA, Antonini A (2014) Continuous intrajejunal infusion of levo- dopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13:141–149PubMedGoogle Scholar
  67. Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231.  https://doi.org/10.1155/2014/861231 Google Scholar
  68. Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Männistö PT, Hong JS (2011) Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology 61(4):574–582PubMedPubMedCentralGoogle Scholar
  69. Ouchi Y, Yagi S, Yokokura M, Sakamoto M (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S200–S204PubMedGoogle Scholar
  70. Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA induced dyskinesia. Nat Neurosci 6:501–506PubMedGoogle Scholar
  71. Pisanu A, Lecca D, Mulas Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291PubMedGoogle Scholar
  72. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535PubMedGoogle Scholar
  73. Pons R, Syrengelas D, Youroukos S, Orfanou I, Dinopoulos A, Cormand B, Ormazabal A, Garzía-Cazorla A, Serrano M, Artuch R (2013) Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 28(8):1058–1063PubMedGoogle Scholar
  74. Pribiag H, Stellwagen D (2014) Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78:13–22PubMedGoogle Scholar
  75. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491PubMedGoogle Scholar
  76. Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D (2012a) Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71(1):76–83PubMedGoogle Scholar
  77. Rossi S, Studer V, Motta C, De Chiara V, Barbieri F, Bernardi G, Centonze D (2012b) Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler 18:1633–1635PubMedGoogle Scholar
  78. Ryan BJ, Lourenço-Venda LL, Crabtree MJ, Hale AB, Channon KM, Wade-Martins R (2014) α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease. Free Radic Biol Med 67:58–68PubMedGoogle Scholar
  79. Sakai N, Kaufman S, Milstien S (1995) Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J Neurochem 65:895–902PubMedGoogle Scholar
  80. Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24PubMedGoogle Scholar
  81. Santello M, Volterra A (2012) TNFα in synaptic function: switching gears. Trends Neurosci 35(10):638–647PubMedGoogle Scholar
  82. Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69(5):988–1001.  https://doi.org/10.1016/j.neuron.2011.02.003 PubMedGoogle Scholar
  83. Santini E, Valjent Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J Neurosci 27:6995–7005PubMedGoogle Scholar
  84. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381Google Scholar
  85. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedGoogle Scholar
  86. Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915PubMedGoogle Scholar
  87. Silver K, Desormaux A, Freeman LC, Lillich JD (2012) Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs. Growth Factors 30(4):258–266PubMedGoogle Scholar
  88. Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, Bezard E, Brotchie JM (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64:177–180PubMedGoogle Scholar
  89. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059PubMedGoogle Scholar
  90. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. Neuroscience 25:3219–3228PubMedGoogle Scholar
  91. Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195PubMedGoogle Scholar
  92. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368PubMedGoogle Scholar
  93. Tassin J, Dürr A, Bonnet AM, Gil R, Vidailhet M, Lücking CB, Goas JY, Durif F, Abada M, Echenne B, Motte J, Lagueny A, Lacomblez L, Jedynak P, Bartholomé B, Agid Y, Brice A (2000) Levodopa-responsive dystonia. GTP cyclohydrolase I or parkin mutations? Brain 123(Pt 6):1112–1121PubMedGoogle Scholar
  94. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527PubMedPubMedCentralGoogle Scholar
  95. Tronci E, Lisci C, Stancampiano R, Fidalgo C, Collu M, Devoto P, Carta M (2013) 5-Hydroxy-tryptophan for the treatment of l-DOPA-induced dyskinesia in the rat Parkinson’s disease model. Neurobiol Dis 60:108–114PubMedGoogle Scholar
  96. Tronci E, Napolitano F, Muñoz A, Fidalgo C, Rossi F, Björklund A, Usiello A, Carta M (2017) BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Exp Neurol 297:73–81PubMedGoogle Scholar
  97. Tronel C, Largeau B, Ribeiro MS, Guilloteau D, Dupont AC, Arlicot N (2017) Molecular targets for PET imaging of activated microglia: the current situation and future expectations. Int J Mol Sci 18(12):802PubMedCentralGoogle Scholar
  98. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435PubMedPubMedCentralGoogle Scholar
  99. Vann LR, Payne SG, Edsall LC, Twitty S, Spiegel S, Milstien S (2002) Involvement of sphingosine kinase in TNF-α-stimulated tetrahydrobiopterin biosynthesis in C6 glioma Ccells. J Biol Chem 277(15):12649–12656PubMedGoogle Scholar
  100. Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82.  https://doi.org/10.1016/j.neuropharm.2014.10.027 PubMedGoogle Scholar
  101. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74(2):457–471PubMedGoogle Scholar
  102. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643.  https://doi.org/10.1146/annurev-physiol-022516-034406 PubMedGoogle Scholar
  103. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36(10):605–613.  https://doi.org/10.1016/j.it.2015.08.008 PubMedPubMedCentralGoogle Scholar
  104. Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31(10):2121–2131PubMedGoogle Scholar
  105. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Augusta Pisanu
    • 1
  • Laura Boi
    • 2
  • Giovanna Mulas
    • 3
  • Saturnino Spiga
    • 3
  • Sandro Fenu
    • 2
  • Anna R. Carta
    • 2
  1. 1.Institute of Neuroscience, National Research CouncilCagliariItaly
  2. 2.Department of Biomedical SciencesUniversity of CagliariCagliariItaly
  3. 3.Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly

Personalised recommendations