Advertisement

Journal of Neural Transmission

, Volume 125, Issue 6, pp 883–897 | Cite as

The brain as a “hyper-network”: the key role of neural networks as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics

  • Luigi F. Agnati
  • Manuela Marcoli
  • Guido Maura
  • Amina Woods
  • Diego Guidolin
Translational Neurosciences - Review Article

Abstract

Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the “core components” of the brain hyper-network that has as special “nodes” the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.

Keywords

Network science Brain circuits’ miniaturisation levels Tetra-partite synapses Electromagnetic fields Broadcasted neuroconnectomics Global integrative actions 

Abbreviations

AP

Action potentials

BHN

Brain hyper-network

BNC

Broadcasted neuroconnectomics

CNS

Central nervous system

CSF

Cerebro-spinal fluid

CSPGs

Chondroitin sulfate proteoglycans

ECM

Extracellular matrix

ECS

Extracellular space

EEG

Electroencephalography

EFN

Extracellular fluid channels networks

EMFs

Electromagnetic fields

EMN

Extracellular molecular networks

FMs

Functional modules

GN

Glia networks

HMN

Horizontal networks

LFPs

Local field potentials

MNM

Modular network model

NN

Neural networks

NT

Neurotransmitter

PAP

Peri-synaptic astrocytic processes

PNNs

Perineuronal nets

R

Receptor

RM

Receptor mosaic

VGCCs

Voltage-gated calcium channels

VT

Volume transmission

WT

Wiring transmission

Notes

Acknowledgements

Funding this work was supported by the University of Genova [Grant 020301002054 to M.M.]; and the University of Padova [Grant 60A06-0481/14 to D.G.].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agnati LF, Fuxe K (1984) New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. Biosci Rep 4:93–98PubMedCrossRefGoogle Scholar
  2. Agnati LF, Fuxe K (2000) Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machine. Prog Brain Res 125:3–19.  https://doi.org/10.1016/S0079-6123(00)25003-6 PubMedCrossRefGoogle Scholar
  3. Agnati LF, Fuxe K, Zini I, Lenzi P, Hökfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58:182–187PubMedGoogle Scholar
  4. Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60:183–190PubMedGoogle Scholar
  5. Agnati LF, Fuxe K, Zoli M, Ozini I, Toffano G, Ferraguti F (1986) A correlation analysis of the regional distribution of central enkephalin and beta endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128:201–207.  https://doi.org/10.1111/j.1748-1716.1986.tb07967.x PubMedCrossRefGoogle Scholar
  6. Agnati LF, Zoli M, Merlo Pich E, Benfenati F, Fuxe K (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem Int 16:479–500.  https://doi.org/10.1016/0197-0186(90)90008-H PubMedCrossRefGoogle Scholar
  7. Agnati LF, Santarossa L, Benfenati F, Ferri M, Morpurgo A, Apolloni B, Fuxe K (2002) Molecular basis of learning and memory: modelling based on receptor mosaics. In: Apolloni B, Kurfes F (eds) From synapses to rules. Kluwer Academic/Plenum Publishers, New York, pp 165–196CrossRefGoogle Scholar
  8. Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 55:509–550.  https://doi.org/10.1124/pr.55.3.2 PubMedCrossRefGoogle Scholar
  9. Agnati LF, Santarossa L, Genedani S, Canela EI, Leo G, Franco R, Woods A, Lluis C, Ferre S, Fuxe K (2004) On the nested hierarchical organization of CNS: basic characteristics of neuronal molecular networks. In: Erdi P, Esposito A, Marinaro M, Scarpetta S (eds) Computational neuroscience: cortical dynamics, lecture notes in computer sciences. Springer, Berlin, pp 24–54CrossRefGoogle Scholar
  10. Agnati LF, Fuxe K, Ferre S (2005a) How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. Trends Biochem Sci 30(4):188–193.  https://doi.org/10.1016/j.tibs.2005.02.010 PubMedCrossRefGoogle Scholar
  11. Agnati LF, Genedani S, Lenzi PL, Leo G, Mora F, Ferre S, Fuxe K (2005b) Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis. J Neural Transm 112:45–63PubMedCrossRefGoogle Scholar
  12. Agnati LF, Tarakanov AO, Ferre S, Fuxe K, Guidolin D (2005c) Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development. J Mol Neurosci 26:193–208PubMedCrossRefGoogle Scholar
  13. Agnati LF, Zunarelli E, Genedani S, Fuxe K (2006a) On the existence of a global molecular network enmeshing the whole central nervous system: physiological and pathological implications. Curr Protein Pept Sci 7:3–15.  https://doi.org/10.2174/138920306775474086 PubMedCrossRefGoogle Scholar
  14. Agnati LF, Leo G, Zanardi A, Genedani S, Rivera A, Fuxe K, Guidolin D (2006b) Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol 187:329–344.  https://doi.org/10.1111/j.1748-1716.2006.01579.x CrossRefGoogle Scholar
  15. Agnati LF, Genedani S, Leo G, Rivera A, Guidolin D, Fuxe K (2007a) One century of progress in neuroscience founded on Golgi and Cajal’s outstanding experimental and theoretical contributions. Brain Res Rev 55(1):167–189.  https://doi.org/10.1016/j.brainresrev.2007.03.004 PubMedCrossRefGoogle Scholar
  16. Agnati LF, Guidolin D, Leo G, Fuxe K (2007b) A boolean network modelling of receptor mosaics relevance of topology and cooperativity. J Neural Transm 114:77–92PubMedCrossRefGoogle Scholar
  17. Agnati LF, Ferré S, Fuxe K (2007c) On the neurobiological basis of consciousness the multiple mirror network hypothesis. In: Locks JT (ed) New research on consciousness. Nova Science Publishers Inc, Hauppauge, pp 65–81Google Scholar
  18. Agnati LF, Baluška F, Barlow PW, Guidolin D (2009) ‘Mosaic’, ‘self-similarity logic’, and ‘biological attraction’ principles: three explanatory instruments in biology. Commun Integr Biol 2:552–563.  https://doi.org/10.4161/cib.2.6.9644 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010a) Understanding wiring and volume transmission. Brain Res Rev 64:137–159.  https://doi.org/10.1016/j.brainresrev.2010.03.003 PubMedCrossRefGoogle Scholar
  20. Agnati LF, Guidolin D, Vilardaga JP, Ciruela F, Fuxe K (2010b) On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J Recept Sig Transduct Res 30:287–303CrossRefGoogle Scholar
  21. Agnati LF, Guidolin D, Maura G, Marcoli M, Leo G, Carone C, De Caro R, Genedani S, Borroto-Escuela DO, Fuxe K (2014a) Information handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J Neural Transm 121:1431–1449PubMedCrossRefGoogle Scholar
  22. Agnati LF, Genedani S, Spano PF, Guidolin D, Fuxe K (2014b) Volume transmission and the russian-doll organization of brain cell networks: aspects of their integrative actions. In: Faingold CL, Blumenfeld H (eds) Neuronal networks in brain function, CNS disorders and therapeutics. Elsevier, Amsterdam, pp 103–119CrossRefGoogle Scholar
  23. Agnati LF, Guidolin D, Cervetto C, Borroto-Escuela DO, Fuxe K (2016) Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. Rev Neurosci 27(1):1–25.  https://doi.org/10.1515/revneuro-2015-0024 PubMedCrossRefGoogle Scholar
  24. Agnati LF, Guidolin D, Maura G, Marcoli M (2018) Functional roles of three cues that provide non-synaptic modes of communication in the brain: electromagnetic field, oxygen and carbon dioxide. J Neurophysiol 119:356–368.  https://doi.org/10.1152/jn.00413.2017 PubMedCrossRefGoogle Scholar
  25. Alocci D, Bernini A, Niccolai N (2013) Atom depth analysis delineates mechanisms of protein intermolecular interactions. Bioch Bioph Res Comm 436:725–729.  https://doi.org/10.1016/j.bbrc.2013.06.024 CrossRefGoogle Scholar
  26. Amiri M, Montaseri G, Bahrami F (2013) A phase plane analysis of neuron–astrocyte interactions. Neural Netw 44:157–165.  https://doi.org/10.1016/j.neunet.2013.03.018 PubMedCrossRefGoogle Scholar
  27. Anastassiou CA, Perin R, Markram H, Koch K (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14:217–223.  https://doi.org/10.1038/nn.2727 PubMedCrossRefGoogle Scholar
  28. Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35:10460–10473.  https://doi.org/10.1523/jneurosci.0045-15.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215.  https://doi.org/10.1016/s0166-2236(98)01349-6 PubMedCrossRefGoogle Scholar
  30. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739PubMedPubMedCentralCrossRefGoogle Scholar
  31. Arnoys EJ, Wang JL (2007) Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 109:89–110PubMedCrossRefGoogle Scholar
  32. Baars BJ, Franklin S (2007) An architectural model of conscious and unconscious brain functions: global workspace theory and IDA. Neural Netw 20:955–961.  https://doi.org/10.1016/j.neunet.2007.09.013 PubMedCrossRefGoogle Scholar
  33. Baars BJ, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200.  https://doi.org/10.3389/fpsyg.2013.00200 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364.  https://doi.org/10.1038/nn.4502 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bechter K (2013) Virus infection as a cause of inflammation in psychiatric disorders. Mod Trends Pharmacopsychiat 28:49–60.  https://doi.org/10.1159/000343967 CrossRefGoogle Scholar
  36. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069PubMedCrossRefGoogle Scholar
  37. Bennett MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511.  https://doi.org/10.1016/s0896-6273(04)00043-1 PubMedCrossRefGoogle Scholar
  38. Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105.  https://doi.org/10.1155/2014/232105 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET (2015) Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 167:18–27.  https://doi.org/10.1016/j.schres.2014.12.040 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26.  https://doi.org/10.1016/S0896-6273(00)80510-3 PubMedCrossRefGoogle Scholar
  41. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69.  https://doi.org/10.1038/nrn2038 PubMedCrossRefGoogle Scholar
  42. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, Do KQ (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA 110(22):9130–9135PubMedPubMedCentralCrossRefGoogle Scholar
  43. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurons. Prog Neurobiol 62:561–581PubMedCrossRefGoogle Scholar
  44. Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P, Woods A, Maura G, Marcoli M, Agnati LF (2017) A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 140:268–279.  https://doi.org/10.1111/jnc.13885 PubMedCrossRefGoogle Scholar
  45. Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012:683897.  https://doi.org/10.1155/2012/683897 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dallerac G, Chever O, Rouach N (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 7:159.  https://doi.org/10.3389/fncel.2013.00159 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440PubMedCrossRefGoogle Scholar
  48. De Pitta’ M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98.  https://doi.org/10.3389/fncom.2012.00098 CrossRefGoogle Scholar
  49. Ding R, Liao X, Li J, Zhang J, Wang M, Guang Y, Qin H, Li X, Zhang K, Liang S, Guan J, Lou J, Jia H, Chen B, Shen H, Chen X (2017) Targeted patching and dendritic Ca2+ imaging in nonhuman primate brain in vivo. Sci Rep 7:2873.  https://doi.org/10.1038/s41598-017-03105-0 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dityatev A, Rusakov DA (2011) Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 21(2):353–359.  https://doi.org/10.1016/j.conb.2010.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dityatev A, Schachner M, Sonderegger P (2010a) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11(11):735–746PubMedCrossRefGoogle Scholar
  52. Dityatev A, Seidenbecher CI, Schachner M (2010b) Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 33:503–512PubMedCrossRefGoogle Scholar
  53. Dityatev A, Wehrle-Haller B, Pitkanen A (2014) Preface. Brain extracellular matrix in health and disease. Prog Brain Res 214:xiii–xvii.  https://doi.org/10.1016/B978-0-444-63486-3.09998-9 PubMedCrossRefGoogle Scholar
  54. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807.  https://doi.org/10.2967/jnumed.109.066647 PubMedCrossRefGoogle Scholar
  55. Duchemin S, Boily M, Sadekova N, Girouard H (2012) The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circ 6:51Google Scholar
  56. Dunlap K, Luebke JL, Turner TJ (1995) Exocytic Ca ++ channels in the mammalian central nervous system. Neuroscience 18:89–98.  https://doi.org/10.1016/0166-2236(95)80030 CrossRefGoogle Scholar
  57. Dzyubenko E, Gottschling C, Faissner A (2016) Neuron-glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast 2016:5214961.  https://doi.org/10.1155/2016/5214961 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716.  https://doi.org/10.1038/35094565 PubMedCrossRefGoogle Scholar
  59. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C (2010) Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res Rev 63(1–2):26–38PubMedCrossRefGoogle Scholar
  60. Fawcett J (2009) Molecular control of brain plasticity and repair. Prog Brain Res 175:501–509.  https://doi.org/10.1016/s0079-6123(09)17534-9 PubMedCrossRefGoogle Scholar
  61. Fellin T (2009) Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 108:533–544.  https://doi.org/10.1111/j.1471-4159.2008.05830.x PubMedCrossRefGoogle Scholar
  62. Fellin T, Carmignoto G (2004) Neuron-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fields RD, Woo DH, Basser PJ (2015) Glial regulation of the neuronal connectome through local and long-distant communication. Neuron 86(2):374–386.  https://doi.org/10.1016/j.neuron.2015.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fillman SG, Sinclair D, Fung SJ, Webster MJ, Weickert CS (2014) Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry 4:e365PubMedPubMedCentralCrossRefGoogle Scholar
  65. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904.  https://doi.org/10.1038/nn.2338 PubMedCrossRefGoogle Scholar
  66. Fuxe K, Agnati LF (eds) (1991) Volume transmission in the brain, novel mechanisms for neural transmission, vol 1. Raven Press, New YorkGoogle Scholar
  67. Fuxe K, Marcellino D, Woods AS, Leo G, Antonelli T, Ferraro L, Tanganelli S, Agnati LF (2009) Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm 116:923–939PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ghézali G, Dallérac G, Rouach N (2016) Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 221(5):2427–2442.  https://doi.org/10.1007/s00429-015-1070-3 PubMedCrossRefGoogle Scholar
  69. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Rev Neurosci 11:87–99.  https://doi.org/10.1038/nrn2757 CrossRefGoogle Scholar
  70. Gogolla N, Caroni P, Luthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 32(5945):1258–1261CrossRefGoogle Scholar
  71. Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny dendrites. Neuron 40:807–821PubMedCrossRefGoogle Scholar
  72. Goldberg M, De Pitta M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909.  https://doi.org/10.1371/journal.pcbi.1000909 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Golgi C (1898) Intorno alla struttura delle cellule nervose. Boll Soc Med Chir Pavia 1:1–14Google Scholar
  74. Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788.  https://doi.org/10.1126/science.1190929 PubMedCrossRefGoogle Scholar
  75. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105.  https://doi.org/10.1007/s00401-009-0622-0 PubMedCrossRefGoogle Scholar
  76. Greer DS (2007) Neurotransmitter fields. Artificial neural networks—ICANN 2007. Lecture notes in computer science, vol 4669. Springer, Berlin, pp 19–28CrossRefGoogle Scholar
  77. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(58):862–885.  https://doi.org/10.1016/j.neuron.2012.02.011 PubMedCrossRefGoogle Scholar
  78. Guidolin D, Fuxe K, Neri G, Nussdorfer GG, Agnati LF (2007) On the role of receptor-receptor interactions and volume transmission in learning and memory. Brain Res Rev 55:119–133PubMedCrossRefGoogle Scholar
  79. Guidolin D, Albertin G, Guescini M, Fuxe K, Agnati LF (2011) Central nervous system and computation. Q Rev 86(4):265–285.  https://doi.org/10.1086/662456 CrossRefGoogle Scholar
  80. Guidolin D, Marcoli M, Maura G, Agnati LF (2017) New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 28(2):113–132.  https://doi.org/10.1515/revneuro-2016-0051 PubMedCrossRefGoogle Scholar
  81. Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, Grün S, Diesmann M, Einevoll GT (2016) Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb Cortex 26:4461–4496.  https://doi.org/10.1093/cercor/bhw237 PubMedCrossRefGoogle Scholar
  82. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355.  https://doi.org/10.1146/annurev-physiol-021909-135843 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63.  https://doi.org/10.1016/j.molmed.2006.12.005 PubMedCrossRefGoogle Scholar
  84. Hales CG, Pockett S (2014) The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Front Syst Neurosci 8:233.  https://doi.org/10.3389/fnsys.2014.00233 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387.  https://doi.org/10.1038/nn1997 PubMedCrossRefGoogle Scholar
  86. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  87. Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151.  https://doi.org/10.1002/glia.22821 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hökfelt T, Lundberg JM, Schultzberg M, Johansson O, Ljungdahl A, Rehfeld J (1980) Coexistence of peptides and putative transmitters in neurons. Adv Biochem Psychopharmacol 22:1–23PubMedGoogle Scholar
  89. Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479.  https://doi.org/10.1002/glia.20871 PubMedCrossRefGoogle Scholar
  90. Jefferys J (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723PubMedCrossRefGoogle Scholar
  91. John N, Krugel H, Frischknecht R, Smalla KH, Schultz C, Kreutz MR, Gundelfinger ED, Seidenbecher CI (2006) Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol Cell Neurosci 31(4):774–784PubMedCrossRefGoogle Scholar
  92. Johnson LR, Ledoux JE, Doyère V (2009) Hebbian reverberations in emotional memory micro circuits. Front Neurosci 3(2):198–205.  https://doi.org/10.3389/neuro.01.027.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kamali-Zare P, Nicholson C (2013) Editorial: brain extracellular space: geometry, matrix and physiological importance. Basic Clin Neurosci 4:4–8Google Scholar
  94. Kato TA, Kanba S (2013) Are microglia minding us? Digging up the unconscious mind-brain relationship from a neuropsychoanalytic approach. Front Hum Neurosci 7:13.  https://doi.org/10.3389/fnhum.2013.00013 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553.  https://doi.org/10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  96. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747.  https://doi.org/10.1371/journal.pbio.1001747 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lensjø KK, Christensen AC, Tennøe S, Fyhn M, Hafting T (2017) Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro 4(3):e0379-16.2017.  https://doi.org/10.1523/eneuro.0379-16.2017 1–8 CrossRefGoogle Scholar
  98. Liboff AR (2016) Magnetic correlates in electromagnetic consciousness. Electromagn Bio 35(3):228–236.  https://doi.org/10.3109/15368378.2015.1057641 CrossRefGoogle Scholar
  99. Mack A, Pfeiffer C, Schneider EM, Bechter K (2017) Schizophrenia or atypical lupus erythematosus with predominant psychiatric manifestations over 25 years: case analysis and review. Front Psychiatry 8:131.  https://doi.org/10.3389/fpsyt.2017.00131 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Marcoli M, Agnati LF, Benedetti F, Genedani S, Guidolin D, Ferraro L, Maura G, Fuxe K (2015) On the role of the extracellular space on the holistic behavior of the brain. Rev Neurosci 26:489–506.  https://doi.org/10.1515/revneuro-2015-0007 PubMedCrossRefGoogle Scholar
  101. Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10PubMedCrossRefGoogle Scholar
  102. Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H, Bechter K (2014) Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 69(1):62–67.  https://doi.org/10.1016/j.cyto.2014.05.008 (Epub 2014 Jun 7) PubMedCrossRefGoogle Scholar
  103. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133CrossRefGoogle Scholar
  104. McFadden J (2002) Synchronous firing and its influence on the brain’s electromagnetic field. J Conscious Stud 9:23–50Google Scholar
  105. McFadden J (2013) The CEMI field theory: gestalt information and the meaning of meaning. J Conscious Stud 20:152–182Google Scholar
  106. Min R, Santello M, Nevian T (2012) The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 6:93.  https://doi.org/10.3389/fncom.2012.00093 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Morawski M, Bruckner MK, Riederer P, Bruckner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188(2):309–315PubMedCrossRefGoogle Scholar
  108. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in Autism. Biol Psychiatry 68:368–376.  https://doi.org/10.1016/j.biopsych.2010.05.024 PubMedCrossRefGoogle Scholar
  109. Nicholson C, Hrabětová S (2017) Brain extracellular space: the final frontier of neuroscience. Biophys J.  https://doi.org/10.1016/j.bpj.2017.06.052 PubMedCrossRefGoogle Scholar
  110. Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trend Neurosci 21:207–215.  https://doi.org/10.1016/S0166-2236(98)01261-2 PubMedCrossRefGoogle Scholar
  111. Nobili R (2009) New perspectives in brain information processing. J Biol Phys 35:347–360.  https://doi.org/10.1007/s10867-009-9163-y PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pall ML (2013) Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 17(8):958–965.  https://doi.org/10.1111/jcmm.12088 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pall ML (2014) Electromagnetic field activation of voltage-gated calcium channels: role in therapeutic effects. Electromagn Biol Med 33(4):251.  https://doi.org/10.3109/15368378.2014.906447 PubMedCrossRefGoogle Scholar
  114. Pall ML (2016) Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat 75(Pt B):43–51.  https://doi.org/10.1016/j.jchemneu.2015.08.001 PubMedCrossRefGoogle Scholar
  115. Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36:405–417PubMedCrossRefGoogle Scholar
  116. Park YK, Goda Y (2016) Integrins in synapse regulation. Nat Rev Neurosci 17:745–756.  https://doi.org/10.1038/nrn.2016.138 PubMedCrossRefGoogle Scholar
  117. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefGoogle Scholar
  118. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431.  https://doi.org/10.1016/j.tins.2009.05.001 PubMedCrossRefGoogle Scholar
  119. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378.  https://doi.org/10.3389/fncel.2014.00378 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pereira A, Furlan FA (2010) Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Progr Neurobiol 92:405–420CrossRefGoogle Scholar
  121. Pockett S (2012) The Electromagnetic Field Theory of Consciousness A Testable Hypothesis about the Characteristics of Conscious as Opposed to Non-conscious Fields. J Conscious Stud 19(11–2):191–223(33)Google Scholar
  122. Pockett S (2013) Field theories of consciousness. Scholarpedia 8(12):4951.  https://doi.org/10.4249/scholarpedia.4951 CrossRefGoogle Scholar
  123. Radewicz K, Garey LJ, Gentleman SM, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150PubMedCrossRefGoogle Scholar
  124. Ransohoff RM, Stevens B (2011) Neuroscience. How many cell types does it take to wire a brain? Science 333(6048):1391–1392.  https://doi.org/10.1126/science.1212112 PubMedCrossRefGoogle Scholar
  125. Rauch U (2004) Extracellular matrix components associated with remodelling processes brain. Cell Mol Life Sci 61:2031–2045PubMedCrossRefGoogle Scholar
  126. Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63:11–25PubMedCrossRefGoogle Scholar
  127. Robertson JM (2013) Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Med Hypotheses 81:1017–1024.  https://doi.org/10.1016/j.mehy.2013.09.021 PubMedCrossRefGoogle Scholar
  128. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555PubMedCrossRefGoogle Scholar
  129. Rouleau N, Dotta BT (2014) Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness. Front Integr Neurosci 8:84.  https://doi.org/10.3389/fnint.2014.00084 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331.  https://doi.org/10.1007/978-3-7091-0932-8_14 PubMedCrossRefGoogle Scholar
  131. Scholkmann F (2015) Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci 14(2):135–153.  https://doi.org/10.1142/S0219635215300115 PubMedCrossRefGoogle Scholar
  132. Seeley WW (2017) Mapping neurodegenerative disease onset and progression. Cold Spring Harb Perspect Biol 2017(9):a023622.  https://doi.org/10.1101/cshperspect.a023622 CrossRefGoogle Scholar
  133. Smith ACW, Scofield MD, Kalivas PW (2015) The tetrapartite synapse: extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res 1628:29–39.  https://doi.org/10.1016/j.brainres.2015.03.027 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sporns O (2013) The human connectome: origins and challenges. NeuroImage 80:53–61PubMedCrossRefGoogle Scholar
  135. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640PubMedCrossRefGoogle Scholar
  136. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG (2008) Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42(2):151–157.  https://doi.org/10.1016/j.jpsychires.2006.10.013 PubMedCrossRefGoogle Scholar
  137. Stevens JR (1985) Reverse engineering the brain. Byte 10:286Google Scholar
  138. Sun ZC, Ge JL, Guo B, Guo J, Hao M, Wu YC, Lin YA, La T, Yao PT, Mei YA, Feng Y (2016) Xue L (2016) Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci Rep 18(6):21774.  https://doi.org/10.1038/srep21774 CrossRefGoogle Scholar
  139. Sykova E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129:861–876.  https://doi.org/10.1016/j.neuroscience.2004.06.077 PubMedCrossRefGoogle Scholar
  140. Syková E, Chvátal A (2000) Glial cells and volume transmission in the CNS. Neurochem Int 36:397–409PubMedCrossRefGoogle Scholar
  141. Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340.  https://doi.org/10.1152/physrev.00027.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950PubMedCrossRefGoogle Scholar
  143. Thalhammer A, Cingolani LA (2014) Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 78:23–30.  https://doi.org/10.1016/j.neuropharm.2013.03.015 PubMedCrossRefGoogle Scholar
  144. Theodosis DT, Piet R, Poulain DA, Oliet SH (2004) Neuronal, glial and syinaptic remodeling in adult hypothalamis: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochem Int 45:491–501PubMedCrossRefGoogle Scholar
  145. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. PNAS 103(14):5567–5572.  https://doi.org/10.1073/pnas.0509425103 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Turing AM (1994) Collected works of A. M. Turing: mechanical intelligence. Elsevier Science Publishers B.V, AmsterdamGoogle Scholar
  147. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822.  https://doi.org/10.1016/j.biopsych.2008.04.025 PubMedCrossRefGoogle Scholar
  148. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239.  https://doi.org/10.1038/35067550 PubMedCrossRefGoogle Scholar
  149. Vargová L, Syková E (2014) Astrocytes and extracellular matrixin extrasynaptic volume transmission. Phil Trans R Soc B 369:20130608.  https://doi.org/10.1098/rstb.2013.0608 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369(1654):20130595.  https://doi.org/10.1098/rstb.2013.0595 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vizi ES (1980) Non-synaptic modulation of transmitter release: pharmacological implications. Trends Pharmacol Sci 1:172–175.  https://doi.org/10.1016/0165-6147(79)90061-0 CrossRefGoogle Scholar
  152. Wade J, McDaid L, Harkin J, Crunelli V, Kelso S (2013) Biophysically based computational models of astrocyte neuron coupling and their functional significance. Front Computat Neurosci 7:44.  https://doi.org/10.3389/fncom.2013.00044 CrossRefGoogle Scholar
  153. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type channels in supporting hippocampal synaptic transmission. Science 264:107–111.  https://doi.org/10.1126/science.7832825 PubMedCrossRefGoogle Scholar
  154. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377PubMedCrossRefGoogle Scholar
  155. Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289PubMedCrossRefGoogle Scholar
  156. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Diagnostic, Clinical Medicine and Public HealthUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  3. 3.Section of Pharmacology and Toxicology, Department of PharmacyUniversity of GenovaGenoaItaly
  4. 4.Centre of Excellence for Biomedical Research CEBR, University of GenovaGenoaItaly
  5. 5.Structural Biology UnitNational Institutes of Health, National Institute of Drug Abuse-Intramural Research ProgramBaltimoreUSA
  6. 6.Department of Molecular MedicineUniversity of PadovaPaduaItaly

Personalised recommendations