Skip to main content

Neuroinflammatory responses in Alzheimer’s disease

Abstract

Neuroinflammatory responses in Alzheimer’s disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease. The outcome of these responses on the pathophysiology of AD depends on several factors and can be either beneficial or detrimental. Thus, understanding the role of neuroinflammation in AD could help to develop safer and more efficient therapeutic strategies. This review discusses recent knowledge on microglia responses toward amyloid and tau pathology in AD, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.

This is a preview of subscription content, access via your institution.

References

  1. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, Parhizkar S, Ward MA, Cavallini A, Jackson S et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol (Berl) 127:667–683

    CAS  Article  Google Scholar 

  2. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Balducci C, Frasca A, Zotti M, La Vitola P, Mhillaj E, Grigoli E, Iacobellis M, Grandi F, Messa M, Colombo L et al (2017) Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav Immun 60:188–197

    CAS  PubMed  Article  Google Scholar 

  4. Baldwin AG, Brough D, Freeman S (2016) Inhibiting the inflammasome: a chemical perspective. J Med Chem 59:1691–1710

    CAS  PubMed  Article  Google Scholar 

  5. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    CAS  PubMed  Article  Google Scholar 

  6. Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    CAS  PubMed  Article  Google Scholar 

  7. Boche D, Donald J, Love S, Harris S, Neal JW, Holmes C, Nicoll JAR (2010) Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer’s disease. Acta Neuropathol (Berl) 120:13–20

    CAS  Article  Google Scholar 

  8. Breitner JCS, Haneuse SJPA, Walker R, Dublin S, Crane PK, Gray SL, Larson EB (2009) Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72:1899–1905

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114

    PubMed  PubMed Central  Article  Google Scholar 

  12. Crack PJ, Bray PJ (2007) Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85:476–480

    CAS  PubMed  Article  Google Scholar 

  13. Daniels MJD, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S et al (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat Commun 7:12504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Dinarello CA, Simon A, van der Meer JWM (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Doi Y, Mizuno T, Maki Y, Jin S, Mizoguchi H, Ikeyama M, Doi M, Michikawa M, Takeuchi H, Suzumura A (2009) Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid beta neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol 175:2121–2132

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Eisenbarth SC, Williams A, Colegio OR, Meng H, Strowig T, Rongvaux A, Henao-Mejia J, Thaiss CA, Joly S, Gonzalez DG et al (2012) NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484:510–513

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–1666

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327:128

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimer’s dement. J Alzheimer’s Assoc 11(608–621):e7

    Google Scholar 

  21. Fassbender K, Walter S, Kühl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ et al (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol 18:203–205

    CAS  Google Scholar 

  22. Ginhoux F, Prinz M (2015) Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Goedert M, Spillantini MG (2011) Pathogenesis of the tauopathies. J Mol Neurosci MN 45:425–431

    CAS  PubMed  Article  Google Scholar 

  24. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    CAS  PubMed  Article  Google Scholar 

  25. Guo H, Callaway JB, Ting JP-Y (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS ONE 10:e0130624

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M et al (2016) Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain J Neurol 139:1252–1264

    Article  Google Scholar 

  29. Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276:422–427

    CAS  PubMed  Article  Google Scholar 

  30. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Heneka MT (2017) Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol Zurich Switz 27:220–222

    Article  Google Scholar 

  32. Heneka MT, Reyes-Irisarri E, Hüll M, Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr Neuropharmacol 9:643–650

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng T-C et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    CAS  PubMed  Article  Google Scholar 

  34. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    CAS  PubMed  Article  Google Scholar 

  35. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM et al (2015a) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Heneka MT, Fink A, Doblhammer G (2015b) Effect of pioglitazone medication on the incidence of dementia. Ann Neurol 78:284–294

    CAS  PubMed  Article  Google Scholar 

  37. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140:395–407

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397

    CAS  PubMed  Article  Google Scholar 

  40. Imamura R, Wang Y, Kinoshita T, Suzuki M, Noda T, Sagara J, Taniguchi S, Okamoto H, Suda T (2010) Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J Immunol Baltim Md 1950(184):5874–5884

    Google Scholar 

  41. Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol Baltim Md 1950(181):7254–7262

    Google Scholar 

  42. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    CAS  PubMed  Article  Google Scholar 

  43. Jin J-J, Kim H-D, Maxwell JA, Li L, Fukuchi K-I (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    CAS  PubMed  Article  Google Scholar 

  45. Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH, LeBlanc AC (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 22:1676–1686

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol Baltim Md 1950(187):6539–6549

    Google Scholar 

  47. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    CAS  PubMed  Article  Google Scholar 

  48. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G, Canzian F, Bellvitge Colorectal Cancer Study Group (2003) Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res 63:3560–3566

    CAS  PubMed  Google Scholar 

  50. Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lange KW, Lange KM, Makulska-Gertruda E, Nakamura Y, Reissmann A, Kanaya S, Hauser J (2017) Ketogenic diets and Alzheimer’s disease. Food Sci Hum Wellness 6:1–9

    Article  Google Scholar 

  52. Lee DC, Rizer J, Selenica M-LB, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D (2010) LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 7:56

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Lemere CA (2007) A beneficial role for IL-1 beta in Alzheimer disease? J Clin Invest 117:1483–1485

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30:759–768

    CAS  PubMed  Article  Google Scholar 

  55. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain J Neurol 128:1778–1789

    Article  Google Scholar 

  56. Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol Baltim Md 1950(188):1098–1107

    Google Scholar 

  57. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM, Brachova L, Yan SD, Walker DG, Shen Y et al (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    CAS  PubMed  Article  Google Scholar 

  58. Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W, Nahaboo Solim MA, Moens TG, Paublete RM, Ali SS et al (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10:633–644

    CAS  PubMed  Article  Google Scholar 

  59. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. McGeer PL, McGeer EG (2001) Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch Neurol 58:1790–1792

    CAS  PubMed  Article  Google Scholar 

  62. McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol (Berl) 126:479–497

    CAS  Article  Google Scholar 

  63. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    CAS  PubMed  Article  Google Scholar 

  64. McGeer PL, Itagaki S, Tago H, McGeer EG (1988) Occurrence of HLA-DR reactive microglia in Alzheimer’s disease. Ann N Y Acad Sci 540:319–323

    CAS  PubMed  Article  Google Scholar 

  65. Michaud J-P, Hallé M, Lampron A, Thériault P, Préfontaine P, Filali M, Tribout-Jover P, Lanteigne A-M, Jodoin R, Cluff C et al (2013) Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA 110:1941–1946

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391:147–149

    CAS  PubMed  Article  Google Scholar 

  67. Morales I, Jiménez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimer’s Dis JAD 37:849–856

    CAS  Article  Google Scholar 

  68. Morihara T, Teter B, Yang F, Lim GP, Boudinot S, Boudinot FD, Frautschy SA, Cole GM (2005) Ibuprofen suppresses interleukin-1beta induction of pro-amyloidogenic alpha1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 30:1111–1120

    CAS  Article  Google Scholar 

  69. Murphy N, Grehan B, Lynch MA (2014) Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromol Med 16:205–215

    CAS  Article  Google Scholar 

  70. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Nicoll JAR, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    CAS  PubMed  Article  Google Scholar 

  73. Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL, Zhang W, Gupta P et al (2017) Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimer’s Dis JAD 55:1083–1099

    CAS  Article  Google Scholar 

  74. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M et al (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Perregaux DG, McNiff P, Laliberte R, Hawryluk N, Peurano H, Stam E, Eggler J, Griffiths R, Dombroski MA, Gabel CA (2001) Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther 299:187–197

    CAS  PubMed  Google Scholar 

  76. Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2012) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord 26:277–281

    CAS  PubMed  Article  Google Scholar 

  77. Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, Asmann YW, Ren Y, Christopher E, Levitch D et al (2016) TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 48:222.e9–222.e15

    CAS  Article  Google Scholar 

  78. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger MD, Liu C, Fassbender K (2016) Stimulation of TLR4 attenuates Alzheimer’s disease-related symptoms and pathology in tau-transgenic mice. J Immunol Baltim Md 1950(197):3281–3292

    Google Scholar 

  79. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S et al (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, Yoder KK, Hutchins GD, West JD, Tallman EF et al (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain J Neurol 138:3076–3088

    Article  Google Scholar 

  81. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci Off J Soc Neurosci 29:11982–11992

    CAS  Article  Google Scholar 

  82. Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE (2010) Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci Off J Soc Neurosci 30:15369–15373

    CAS  Article  Google Scholar 

  83. Richard KL, Filali M, Préfontaine P, Rivest S (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 28:5784–5793

    CAS  Article  Google Scholar 

  84. Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NCY et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    CAS  PubMed  Article  Google Scholar 

  85. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R, Mancuso R, Clerici M (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Scheiblich H, Schlütter A, Golenbock DT, Latz E, Martinez-Martinez P, Heneka MT (2017) Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J Neurochem. 143(5):534–550. https://doi.org/10.1111/jnc.14225

    CAS  PubMed  Article  Google Scholar 

  87. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    CAS  PubMed  Article  Google Scholar 

  88. Scholtzova H, Kascsak RJ, Bates KA, Boutajangout A, Kerr DJ, Meeker HC, Mehta PD, Spinner DS, Wisniewski T (2009) Induction of toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease-related pathology. J Neurosci Off J Soc Neurosci 29:1846–1854

    CAS  Article  Google Scholar 

  89. Scholtzova H, Chianchiano P, Pan J, Sun Y, Goñi F, Mehta PD, Wisniewski T (2014) Amyloid β and Tau Alzheimer’s disease related pathology is reduced by Toll-like receptor 9 stimulation. Acta Neuropathol Commun 2:101

    PubMed  PubMed Central  Google Scholar 

  90. Scholtzova H, Do E, Dhakal S, Sun Y, Liu S, Mehta PD, Wisniewski T (2017) Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci Off J Soc Neurosci 37:936–959

    CAS  Article  Google Scholar 

  91. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Song M, Jin J, Lim J-E, Kou J, Pattanayak A, Rehman JA, Kim H-D, Tahara K, Lalonde R, Fukuchi K (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161

    CAS  PubMed  Article  Google Scholar 

  94. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    CAS  PubMed  Article  Google Scholar 

  95. Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol Clifton NJ 1040:91–101

    CAS  Article  Google Scholar 

  96. Su F, Bai F, Zhou H, Zhang Z (2016) Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun 52:187–198

    CAS  PubMed  Article  Google Scholar 

  97. Suh EC, Jung YJ, Kim YA, Park E-M, Lee SJ, Lee KE (2013) Knockout of Toll-like receptor 2 attenuates Aβ25-35-induced neurotoxicity in organotypic hippocampal slice cultures. Neurochem Int 63:818–825

    CAS  PubMed  Article  Google Scholar 

  98. Tahara K, Kim H-D, Jin J-J, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain J Neurol 129:3006–3019

    Article  Google Scholar 

  99. Tan M-S, Yu J-T, Jiang T, Zhu X-C, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48:875–882

    CAS  PubMed  Article  Google Scholar 

  100. Tan M-S, Tan L, Jiang T, Zhu X-C, Wang H-F, Jia C-D, Yu J-T (2014) Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5:e1382

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124:83–92

    CAS  PubMed  Article  Google Scholar 

  102. Tzeng T-C, Golenbock D (2014) NLRP3 inflammasome activation in Alzheimer’s disease (INC9P.446). J Immunol 192(188):5

    Google Scholar 

  103. Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98

    CAS  PubMed  Article  Google Scholar 

  104. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97

    CAS  PubMed  Article  Google Scholar 

  105. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W et al (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 20:947–956

    CAS  Article  Google Scholar 

  106. Wang Y, Hasegawa M, Imamura R, Kinoshita T, Kondo C, Konaka K, Suda T (2004) PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int Immunol 16:777–786

    CAS  PubMed  Article  Google Scholar 

  107. Wang J, Tan L, Wang H-F, Tan C-C, Meng X-F, Wang C, Tang S-W, Yu J-T (2015a) Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimer’s Dis JAD 44:385–396

    Article  Google Scholar 

  108. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH et al (2015b) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. Zurich Switz 18:253–266

    CAS  Article  Google Scholar 

  110. Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5:633–639

    CAS  PubMed  Article  Google Scholar 

  111. Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD et al (2015) The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JAR, Boche D (2013) Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain J Neurol 136:2677–2696

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Thomas Heneka.

Ethics declarations

Funding

This work was supported by the EU Joint Programme—Neurodegenerative Disease Research (JPND) MADGIC (01ED1611), through the German Federal Ministry of Education and Research (BMBF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dansokho, C., Heneka, M.T. Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm 125, 771–779 (2018). https://doi.org/10.1007/s00702-017-1831-7

Download citation

Keywords

  • Neurodegenerative diseases
  • Alzheimer’s disease
  • Neuroinflammation
  • Microglia
  • Innate immunity
  • TLRs
  • NLRP3 inflammasome