Journal of Neural Transmission

, Volume 125, Issue 4, pp 699–703 | Cite as

Pupillometry as an indicator of l-DOPA dosages in Parkinson’s disease patients

  • O. Bartošová
  • C. Bonnet
  • O. Ulmanová
  • M. Šíma
  • F. Perlík
  • E. Růžička
  • O. Slanař
Neurology and Preclinical Neurological Studies - Original Article


Dopamine was shown to induce mydriasis by excitation of alpha-adrenergic receptors at the dilator pupillae muscle. Pupilla diameter may thus serve as an indirect measure of peripheral pharmacokinetics of l-DOPA and dopamine. The aim of this study is to evaluate the effect of l-DOPA dosage on pupillometric parameters in Parkinson’s disease (PD) patients. Sixteen PD patients and 14 healthy control subjects (CS) were studied. The statistical analysis revealed significant differences between CS and PD patients for the mean maximum and minimum pupil diameters (p = 0.017, p = 0.028, respectively), with higher values found in PD. Moreover, a significant dose–response relationship was found between the maximum pupil diameter and both the morning l-DOPA dose (R 2 = 0.78) and the total daily l-DOPA dose (R 2 = 0.93). A sigmoid-shaped curve best describes the dose–response relationship, with a ceiling effect at about 400 mg l-DOPA daily dose. In conclusion, measuring pupillometric parameters represents a sensitive tool for non-invasive evaluation of the peripheral effect of l-DOPA, especially with daily doses below 400 mg l-DOPA.


Pupillometry l-DOPA Parkinson’s disease Dose–response relationship Pupil parameters Maximum pupil diameter 



Beck depression inventory


Control subjects

D1, D2

Dopamine receptors


Difference between MAX and MIN


Frontal assessment battery


Maximum pupil parameter


Minimum pupil parameter


Mini-mental state examination


Parkinson’s disease


R-squared for nonlinear regression


Latency for the onset of constriction


Unified Parkinson’s disease rating scale


Variation ((MAX − MIN)/MAX) × 100


Maximum constriction velocity


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Fotiou F, Goulas A, Fountoulakis K, Koutlas E, Hamlatzis P, Papakostopoulos D (1998) Changes in psychophysiological processing of vision in myasthenia gravis. Int J Psychophysiol 29(3):303–310CrossRefPubMedGoogle Scholar
  2. Fotiou DF, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A (2009) Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int J Psychophysiol 73(2):143–149CrossRefPubMedGoogle Scholar
  3. Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Karlovasitou A (2011) Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int J Neurosci 121(1):37–43CrossRefPubMedGoogle Scholar
  4. Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Gerasimou G, Gotzamani-Psarrakou A, Karlovasitou A (2012) Pupillometry and 123I-DaTSCAN imaging in Parkinson’s disease: a comparison study. Int J Neurosci 122(1):26–34CrossRefPubMedGoogle Scholar
  5. Gordan R, Gwathmey JK, Xie LH (2015) Autonomic and endocrine control of cardiovascular function. World J Cardiol 7(4):204–214CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jain S (2011) Multi-organ autonomic dysfunction in Parkinson disease. Parkinsonism Relat Disord 17(2):77–83CrossRefPubMedGoogle Scholar
  7. Langer SZ (1980) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32(4):337–362PubMedGoogle Scholar
  8. Matouskova O, Slanar O, Chytil L, Perlik F (2010) Pupillometry in healthy volunteers as a biomarker of tramadol efficacy. J Clin Pharm Ther 36(4):513–517CrossRefPubMedGoogle Scholar
  9. Micieli G, Tassorelli C, Martignoni E, Pacchetti C, Bruggi P, Magri M, Nappi G (1991) Disordered pupil reactivity in Parkinson’s disease. Clin Auton Res 1(1):55–58CrossRefPubMedGoogle Scholar
  10. Navailles S, Carta M, Guthrie M, De Deurwaerdere P (2011) l-DOPA and serotonergic neurons: functional implication and therapeutic perspectives in Parkinson’s disease. Central Nerv Syst Agents Med Chem 11(4):305–320CrossRefGoogle Scholar
  11. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013CrossRefPubMedGoogle Scholar
  12. Shannon RP, Mead A, Sears ML (1976) The effect of dopamine on the intraocular pressure and pupil of the rabbit eye. Invest Ophthalmol 15(5):371–380PubMedGoogle Scholar
  13. Slanar O, Nobilis M, Kvetina J, Idle JR, Perlik F (2006) CYP2D6 polymorphism, tramadol pharmacokinetics and pupillary response. Eur J Clin Pharmacol 62(1):75–76 (author reply 77–78) CrossRefPubMedGoogle Scholar
  14. Slanar O, Nobilis M, Kvetina J, Mikoviny R, Zima T, Idle JR, Perlik F (2007) Miotic action of tramadol is determined by CYP2D6 genotype. Physiol Res 56(1):129–136PubMedGoogle Scholar
  15. Spiers AS, Calne DB, Vakil SD, French TM (1971) Action of thymoxamine on mydriasis induced by levodopa and dopamine. Br Med J 2(5759):438–439CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stergiou V, Fotiou D, Tsiptsios D, Haidich B, Nakou M, Giantselidis C, Karlovasitou A (2009) Pupillometric findings in patients with Parkinson’s disease and cognitive disorder. Int J Psychophysiol 72(2):97–101CrossRefPubMedGoogle Scholar
  17. Tambasco N, Romoli M, Calabresi P (2017) Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol. PubMedGoogle Scholar
  18. Velasco M, Luchsinger A (1998) Dopamine: pharmacologic and therapeutic aspects. Am J Ther 5(1):37–43CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
  2. 2.Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic

Personalised recommendations