Journal of Neural Transmission

, Volume 125, Issue 3, pp 547–563 | Cite as

Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates

  • Adriana Galvan
  • Michael J. Caiola
  • Daniel L. Albaugh
Neurology and Preclinical Neurological Studies - Review Article


Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.


Optogenetics Opsins Chemogenetics DREADDs Basal ganglia Non-human primates Monkeys 



This work was supported through grants from NIH/NINDS R01-NS083386, P50-NS098685 (Udall Center of Excellence for Parkinson’s Disease Research), and NIH/ORIP to the Yerkes Center (P51 OD011132).


  1. Acker L, Pino EN, Boyden ES, Desimone R (2016) FEF inactivation with improved optogenetic methods. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1610784113 Google Scholar
  2. Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc Natl Acad Sci USA 112:6730–6735. doi: 10.1073/pnas.1423328112 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  4. Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R et al (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80:979–985. doi: 10.1136/jnnp.2008.154948 PubMedCrossRefGoogle Scholar
  5. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168. doi: 10.1073/pnas.0700293104 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. doi: 10.1006/exnr.2000.7408 PubMedCrossRefGoogle Scholar
  7. Benhamou L, Bronfeld M, Bar-Gad I, Cohen D (2012) Globus Pallidus external segment neuron classification in freely moving rats: a comparison to primates. PLoS One 7:e45421. doi: 10.1371/journal.pone.0045421 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27PubMedCrossRefGoogle Scholar
  9. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRefGoogle Scholar
  10. Bernal-Casas D, Lee HJ, Weitz AJ, Lee JH (2017) Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron. doi: 10.1016/j.neuron.2016.12.035 PubMedPubMedCentralGoogle Scholar
  11. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19:1971–1980. doi: 10.1038/mt.2011.157 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beyeler A, Namburi P, Glober Gordon F, Simonnet C, Calhoon Gwendolyn G, Conyers Garrett F et al (2016) Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90:348–361. doi: 10.1016/j.neuron.2016.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boyden ES (2011) A history of optogenetics: the development of tools for controlling brain circuits with light F1000. Biol Rep. doi: 10.3410/B3-11 Google Scholar
  15. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi: 10.1038/nn1525 PubMedCrossRefGoogle Scholar
  16. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A et al (2011) Deep brain stimulation for parkinson disease. Arch Neurol. doi: 10.1001/archneurol.2010.260 PubMedGoogle Scholar
  17. Cavanaugh J, Monosov IE, McAlonan K, Berman R, Smith MK, Cao V et al (2012) Optogenetic inactivation modifies monkey visuomotor behavior Neuron 76:901–907. doi: 10.1016/j.neuron.2012.10.016 PubMedGoogle Scholar
  18. Chang WH, Lin SK, Lane HY, Wei FC, Hu WH, Lam YW et al (1998) Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 22:723–739PubMedCrossRefGoogle Scholar
  19. Chen X, Choo H, Huang XP, Yang X, Stone O, Roth BL et al (2015) The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Neurosci 6:476–484. doi: 10.1021/cn500325v PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chiken S, Nambu A (2015) Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist 22:313–322. doi: 10.1177/1073858415581986 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102. doi: 10.1038/nature08652 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Christie IN, Wells JA, Southern P, Marina N, Kasparov S, Gourine AV et al (2013) fMRI response to blue light delivery in the naive brain: implications for combined optogenetic fMRI studies. Neuroimage 66:634–641. doi: 10.1016/j.neuroimage.2012.10.074 PubMedCrossRefGoogle Scholar
  23. Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD (2015) Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 85:364–376. doi: 10.1016/j.neuron.2014.12.022 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88. doi: 10.1038/nature10754 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242. doi: 10.1038/nature11846 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dai J, Brooks DI, Sheinberg DL (2014) Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr Biol 24:63–69. doi: 10.1016/j.cub.2013.11.011 PubMedCrossRefGoogle Scholar
  27. Dai J, Ozden I, Brooks DI, Wagner F, May T, Agha NS et al (2015) Modified toolbox for optogenetics in the nonhuman primate. Neurophotonics 2:031202. doi: 10.1117/1.NPh.2.3.031202 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364. doi: 10.1038/nrn1104 PubMedCrossRefGoogle Scholar
  29. de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY et al (2014) Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther. doi: 10.1038/mtm.2013.5 Google Scholar
  30. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225. doi: 10.1038/nn.4091 PubMedPubMedCentralCrossRefGoogle Scholar
  31. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285. doi: 10.1016/0166-2236(90)90110-V PubMedCrossRefGoogle Scholar
  32. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci. doi: 10.1038/nn.2749 PubMedPubMedCentralGoogle Scholar
  33. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L et al (2016) A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci 19:1743–1749. doi: 10.1038/nn.4430 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dodiya HB, Bjorklund T, Stansell J 3rd, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587. doi: 10.1038/mt.2009.216 PubMedCrossRefGoogle Scholar
  35. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112. doi: 10.1089/hum.1996.7.17-2101 PubMedCrossRefGoogle Scholar
  36. Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ et al (2016) Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39. doi: 10.1038/nn.4192 PubMedCrossRefGoogle Scholar
  37. El-Shamayleh Y, Ni AM, Horwitz GD (2016) Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol jn 00087:02016. doi: 10.1152/jn.00087.2016 Google Scholar
  38. Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51:237–347PubMedCrossRefGoogle Scholar
  39. Farrell MS, Roth BL (2013) Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res 1511:6–20. doi: 10.1016/j.brainres.2012.09.043 PubMedCrossRefGoogle Scholar
  40. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi: 10.1146/annurev-neuro-061010-113817 PubMedCrossRefGoogle Scholar
  41. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D et al (2015) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. doi: 10.1126/science.aac9698 PubMedGoogle Scholar
  42. Ferenczi EA, Vierock J, Atsuta-Tsunoda K, Tsunoda SP, Ramakrishnan C, Gorini C et al (2016) Optogenetic approaches addressing extracellular modulation of neural excitability. Sci Rep 6:23947. doi: 10.1038/srep23947 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fiandaca MS, Varenika V, Eberling J, McKnight T, Bringas J, Pivirotto P et al (2009) Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 47(Suppl 2):T27–T35. doi: 10.1016/j.neuroimage.2008.11.012 PubMedCrossRefGoogle Scholar
  44. Fieblinger T, Graves SM, Sebel LE, Alcacer C, Plotkin JL, Gertler TS et al (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5:5316. doi: 10.1038/ncomms6316 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of Basal Ganglia output by direct and indirect pathway projection neurons. J Neurosci 33:18531–18539. doi: 10.1523/JNEUROSCI.1278-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Galvan A, Hu X, Smith Y, Wichmann T (2012) In vivo optogenetic control of striatal and thalamic neurons in non-human primates. PLoS One 7:e50808. doi: 10.1371/journal.pone.0050808 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Galvan A, Hu X, Smith Y, Wichmann T (2016) Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J Neurosci 36:3519–3530. doi: 10.1523/JNEUROSCI.4363-15.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C (2008) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434. doi: 10.1093/cercor/bhn093 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454. doi: 10.1038/nm1208 PubMedCrossRefGoogle Scholar
  50. Gerits A, Vanduffel W (2013) Optogenetics in primates: a shining future? Trends Genet 29:403–411. doi: 10.1016/j.tig.2013.03.004 PubMedCrossRefGoogle Scholar
  51. Gerits A, Farivar R, Rosen BR, Wald LL, Boyden ES, Vanduffel W (2012) Optogenetically induced behavioral and functional network changes in primates. Curr Biol 22:1722–1726. doi: 10.1016/j.cub.2012.07.023 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gerits A, Vancraeyenest P, Vreysen S, Laramee ME, Michiels A, Gijsbers R et al (2015) Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex. Neurophotonics 2:031209. doi: 10.1117/1.NPh.2.3.031209 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ginger M, Haberl M, Conzelmann KK, Schwarz MK, Frick A (2013) Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 7:2. doi: 10.3389/fncir.2013.00002 PubMedPubMedCentralGoogle Scholar
  54. Glajch KE, Kelver DA, Hegeman DJ, Cui Q, Xenias HS, Augustine EC et al (2016) Npas1+pallidal neurons target striatal projection neurons. J Neurosci 36:5472–5488. doi: 10.1523/JNEUROSCI.1720-15.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gompf HS, Budygin EA, Fuller PM, Bass CE (2015) Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals Front. Behav Neurosci 9:152. doi: 10.3389/fnbeh.2015.00152 Google Scholar
  56. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N et al (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27:9817–9823. doi: 10.1523/JNEUROSCI.2707-07.2007 PubMedCrossRefGoogle Scholar
  57. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139. doi: 10.1007/s11068-008-9027-6 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359. doi: 10.1126/science.1167093 PubMedCrossRefGoogle Scholar
  59. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Samulski RJ (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20:450–459. doi: 10.1038/gt.2012.101 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Grayson DS, Bliss-Moreau E, Machado CJ, Bennett J, Shen K, Grant KA et al (2016) The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91:453–466. doi: 10.1016/j.neuron.2016.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Grillner S, Robertson B, Stephenson-Jones M (2013) The evolutionary origin of the vertebrate basal ganglia and its role in action selection. J Physiol 591:5425–5431. doi: 10.1113/jphysiol.2012.246660 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J et al (2006) Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 17:291–302. doi: 10.1089/hum.2006.17.291 PubMedCrossRefGoogle Scholar
  63. Han X (2012) Optogenetics in the nonhuman primate. Prog Brain Res 196:215–233. doi: 10.1016/B978-0-444-59426-6.00011-2 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT, Stern P et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198. doi: 10.1016/j.neuron.2009.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18. doi: 10.3389/fnsys.2011.00018 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255. doi: 10.1002/cne.10165 PubMedCrossRefGoogle Scholar
  67. Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. doi: 10.1038/nature18942 PubMedPubMedCentralGoogle Scholar
  68. Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D (2016) Optogenetic assessment of horizontal interactions in primary visual cortex. J Neurosci 34:4976–4990. doi: 10.1523/jneurosci.4116-13.2014 Google Scholar
  69. Hughes SM, Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore R, Abraham W (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci. doi: 10.3389/fnmol.2015.00014 PubMedPubMedCentralGoogle Scholar
  70. Inoue K, Takada M, Matsumoto M (2015) Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat Commun 6:8378. doi: 10.1038/ncomms9378 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jackman SL, Beneduce BM, Drew IR, Regehr WG (2014) Achieving high-frequency optical control of synaptic transmission. J Neurosci 34:7704–7714. doi: 10.1523/JNEUROSCI.4694-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328:243–250PubMedGoogle Scholar
  73. Jazayeri M, Lindbloom-Brown Z, Horwitz GD (2012) Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 15:1368–1370. doi: 10.1038/nn.3210 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL et al (2013) Distinct extended amygdala circuits for divergent motivational states. Nature 496:224–228. doi: 10.1038/nature12041 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA et al (2006) Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 108:3321–3328. doi: 10.1182/blood-2006-04-017913 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jin X, Costa RM (2015) Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol 33:188–196. doi: 10.1016/j.conb.2015.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci. doi: 10.1038/nn.3632 Google Scholar
  78. Junyent F, Kremer EJ (2015) CAV-2—why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93. doi: 10.1016/j.coph.2015.08.004 PubMedCrossRefGoogle Scholar
  79. Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H et al (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206. doi: 10.1089/hum.2009.179 PubMedCrossRefGoogle Scholar
  80. Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M et al (2011b) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179. doi: 10.1523/JNEUROSCI.4005-11.2011 PubMedCrossRefGoogle Scholar
  81. Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D et al (2011c) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523. doi: 10.1089/hum.2011.111 PubMedCrossRefGoogle Scholar
  82. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40. doi: 10.1038/83324 PubMedCrossRefGoogle Scholar
  83. Kim S-G, Harel N, Jin T, Kim T, Lee P, Zhao F (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26:949–962. doi: 10.1002/nbm.2885 PubMedCrossRefGoogle Scholar
  84. Klein C, Evrard HC, Shapcott KA, Haverkamp S, Logothetis NK, Schmid MC (2016) Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90:143–151. doi: 10.1016/j.neuron.2016.02.036 PubMedCrossRefGoogle Scholar
  85. Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS et al (2014) SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. NeuroImage 103:171–180. doi: 10.1016/j.neuroimage.2014.09.023 PubMedCrossRefGoogle Scholar
  86. Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV (2015) Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 22:116–126. doi: 10.1038/gt.2014.115 PubMedCrossRefGoogle Scholar
  87. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626. doi: 10.1038/nature09159 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818. doi: 10.1038/nn.3100 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kravitz AV, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32. doi: 10.1016/j.brainres.2012.11.018 PubMedCrossRefGoogle Scholar
  90. Lameh J, Burstein ES, Taylor E, Weiner DM, Vanover KE, Bonhaus DW (2007) Pharmacology of N-desmethylclozapine. Pharmacol Ther 115:223–231. doi: 10.1016/j.pharmthera.2007.05.004 PubMedCrossRefGoogle Scholar
  91. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792. doi: 10.1038/nature09108 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV et al (2016) Activation of direct and indirect pathway medium spiny neurons drives distinct brain-wide responses. Neuron. doi: 10.1016/j.neuron.2016.06.010 Google Scholar
  93. Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21:233–241. doi: 10.1038/gt.2013.75 PubMedCrossRefGoogle Scholar
  94. Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J et al (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118. doi: 10.1093/brain/124.10.2105 PubMedCrossRefGoogle Scholar
  95. Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98:3525–3537. doi: 10.1152/jn.00808.2007 PubMedCrossRefGoogle Scholar
  96. Li Q, Ke Y, Chan Danny CW, Qian Z-M, Yung Ken KL, Ko H et al (2012) Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 76:1030–1041. doi: 10.1016/j.neuron.2012.09.032 PubMedCrossRefGoogle Scholar
  97. Lozano Andres M, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77:406–424. doi: 10.1016/j.neuron.2013.01.020 PubMedCrossRefGoogle Scholar
  98. Lu Y, Truccolo W, Wagner FB, Vargas-Irwin CE, Ozden I, Zimmermann JB et al (2015) Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. J Neurophysiol 113:3574–3587. doi: 10.1152/jn.00792.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  99. MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA et al. (2016) Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3. doi: 10.1523/ENEURO.0219-16.2016
  100. Mahn M, Prigge M, Ron S, Levy R, Yizhar O (2016) Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 19:554–556. doi: 10.1038/nn.4266 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593. doi: 10.1038/mt.2009.286 PubMedCrossRefGoogle Scholar
  102. Masamizu Y, Okada T, Kawasaki K, Ishibashi H, Yuasa S, Takeda S et al (2011) Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9. Neuroscience 193:249–258. doi: 10.1016/j.neuroscience.2011.06.080 PubMedCrossRefGoogle Scholar
  103. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172. doi: 10.1038/nmeth.1808 CrossRefGoogle Scholar
  104. May T, Ozden I, Brush B, Borton D, Wagner F, Agha N et al (2014) Detection of optogenetic stimulation in somatosensory cortex by non-human primates–towards artificial tactile sensation. PLoS One 9:e114529. doi: 10.1371/journal.pone.0114529 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF et al (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123:5342–5350. doi: 10.1172/jci72117 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Miguelez C, Morin S, Martinez A, Goillandeau M, Bezard E, Bioulac B et al (2012) Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. J Physiol 590:5861–5875. doi: 10.1113/jphysiol.2012.241331 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Murlidharan G, Samulski RJ, Asokan A (2014) Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 7:76. doi: 10.3389/fnmol.2014.00076 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nagai Y, Kikuchi E, Lerchner W, Inoue KI, Ji B, Eldridge MA et al (2016) PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat Commun 7:13605. doi: 10.1038/ncomms13605 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284. doi: 10.1016/j.cub.2005.11.032 PubMedCrossRefGoogle Scholar
  110. Nassi JJ, Avery MC, Cetin AH, Roe AW, Reynolds JH (2015) Optogenetic activation of normalization in alert macaque visual cortex. Neuron 86:1504–1517. doi: 10.1016/j.neuron.2015.05.040 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450. doi: 10.1016/j.neuroscience.2009.03.032 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nieh Edward H, Matthews Gillian A, Allsop Stephen A, Presbrey Kara N, Leppla Christopher A, Wichmann R et al (2015) Decoding neural circuits that control compulsive sucrose seeking. Cell 160:528–541. doi: 10.1016/j.cell.2015.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N et al (2015) Double virus vector infection to the prefrontal network of the Macaque brain. PLoS One 10:e0132825. doi: 10.1371/journal.pone.0132825 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ohayon S, Grimaldi P, Schweers N, Tsao DY (2013) Saccade modulation by optical and electrical stimulation in the macaque frontal eye field. J Neurosci 33:16684–16697. doi: 10.1523/jneurosci.2675-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Oldenburg IA, Sabatini BL (2015) Antagonistic but not symmetric regulation of primary motor cortex by basal ganglia direct and indirect pathways. Neuron 86:1174–1181. doi: 10.1016/j.neuron.2015.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ozden I, Wang J, Lu Y, May T, Lee J, Goo W et al (2013) A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219:142–154. doi: 10.1016/j.jneumeth.2013.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Petryszyn S, Beaulieu J-M, Parent A, Parent M (2014) Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 59–60:51–61. doi: 10.1016/j.jchemneu.2014.06.002 PubMedCrossRefGoogle Scholar
  118. Portales-Casamar E, Swanson DJ, Liu L, de Leeuw CN, Banks KG, Ho Sui SJ et al (2010) A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci USA 107:16589–16594. doi: 10.1073/pnas.1009158107 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Raichle ME (2011) The restless brain. Brain Connect 1:3–12. doi: 10.1089/brain.2011.0019 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rajasethupathy P, Ferenczi E, Deisseroth K (2016) Targeting neural circuits. Cell 165:524–534. doi: 10.1016/j.cell.2016.03.047 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ et al (2016) Rabies virus CVS-N2c(DeltaG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89:711–724. doi: 10.1016/j.neuron.2016.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rein ML, Deussing JM (2012) The optogenetic (r)evolution. Mol Genet Genomics 287:95–109. doi: 10.1007/s00438-011-0663-7 PubMedCrossRefGoogle Scholar
  123. Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X et al (2016) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19:220–222. doi: 10.1038/nn.4199 PubMedCrossRefGoogle Scholar
  124. Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262:446–463. doi: 10.1002/cne.902620308 PubMedCrossRefGoogle Scholar
  125. Rosenbluth KH, Eschermann JF, Mittermeyer G, Thomson R, Mittermeyer S, Bankiewicz KS (2011) Analysis of a simulation algorithm for direct brain drug delivery. Neuroimage. doi: 10.1016/j.neuroimage.2011.08.107 PubMedPubMedCentralGoogle Scholar
  126. Roth Bryan L (2016) DREADDs for neuroscientists. Neuron 89:683–694. doi: 10.1016/j.neuron.2016.01.040 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Roth BD, Driscoll JPo (2014) Psychoactive drug screening program. Accessed 20 October 2016
  128. Ruiz O, Lustig BR, Nassi JJ, Cetin A, Reynolds JH, Albright TD et al (2013) Optogenetics through windows on the brain in the nonhuman primate. J Neurophysiol 110:1455–1467. doi: 10.1152/jn.00153.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24:526–532. doi: 10.1089/hum.2013.005 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al (2014) AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 22:329–337. doi: 10.1038/mt.2013.266 PubMedPubMedCentralCrossRefGoogle Scholar
  131. San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P et al (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 20:1178–1183. doi: 10.1038/gt.2013.48 PubMedCrossRefGoogle Scholar
  132. Sanders TH, Jaeger D (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95:225–237. doi: 10.1016/j.nbd.2016.07.021 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sanftner LM, Sommer JM, Suzuki BM, Smith PH, Vijay S, Vargas JA et al (2005) AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 194:476–483. doi: 10.1016/j.expneurol.2005.03.007 PubMedCrossRefGoogle Scholar
  134. Saunders A, Huang KW, Sabatini BL (2016) Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS One 11:e0149798. doi: 10.1371/journal.pone.0149798 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol 8:51–61. doi: 10.1038/nrmicro2260 PubMedCrossRefGoogle Scholar
  136. Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56:1439–1461PubMedCrossRefGoogle Scholar
  137. Smith Y, Wichmann T, DeLong MR (2014) Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci 15:63. doi: 10.1038/nrn3469-c1 PubMedCrossRefGoogle Scholar
  138. Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, Boyden ES et al (2016) Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166(1564–1571):e1566. doi: 10.1016/j.cell.2016.08.024 Google Scholar
  139. Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407. doi: 10.1146/annurev-neuro-071013-014048 PubMedCrossRefGoogle Scholar
  140. Sternson SM, Atasoy D, Betley JN, Henry FE, Xu S (2016) An emerging technology framework for the neurobiology of appetite. Cell Metab 23:234–253. doi: 10.1016/j.cmet.2015.12.002 PubMedCrossRefGoogle Scholar
  141. Straub C, Tritsch NX, Hagan NA, Gu C, Sabatini BL (2014) Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci 34:8557–8569. doi: 10.1523/JNEUROSCI.0589-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Straub C, Saulnier JL, Begue A, Feng DD, Huang KW, Sabatini BL (2016) Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 92:84–92. doi: 10.1016/j.neuron.2016.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tamura K, Ohashi Y, Tsubota T, Takeuchi D, Hirabayashi T, Yaguchi M et al (2012) A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J Neurosci Methods 211:49–57. doi: 10.1016/j.jneumeth.2012.08.004 PubMedCrossRefGoogle Scholar
  144. Tecuapetla F, Matias S, Dugue GP, Mainen ZF, Costa RM (2014) Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat Commun 5:4315. doi: 10.1038/ncomms5315 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tecuapetla F, Jin X, Lima Susana Q, Costa Rui M (2016) Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166:703–715. doi: 10.1016/j.cell.2016.06.032 PubMedCrossRefGoogle Scholar
  146. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:372–382. doi: 10.1016/j.neuron.2016.09.021 PubMedCrossRefGoogle Scholar
  147. Teschemacher AG, Wang S, Lonergan T, Duale H, Waki H, Paton JF et al (2005) Targeting specific neuronal populations using adeno- and lentiviral vectors: applications for imaging and studies of cell function. Exp Physiol 90:61–69. doi: 10.1113/expphysiol.2004.028191 PubMedCrossRefGoogle Scholar
  148. Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK et al (2013) Mapping brain metabolic connectivity in awake rats with PET and optogenetic stimulation. J Neurosci 33:6343–6349. doi: 10.1523/jneurosci.4997-12.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358. doi: 10.1038/nrg1066 PubMedCrossRefGoogle Scholar
  150. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266. doi: 10.1038/nature11466 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Urban DJ, Zhu H, Marcinkiewcz CA, Michaelides M, Oshibuchi H, Rhea D et al (2015) Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons. Neuropsychopharmacology 41:1404–1415. doi: 10.1038/npp.2015.293 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wang L, Calcedo R, Wang H, Bell P, Grant R, Vandenberghe LH et al (2010) The pleiotropic effects of natural AAV infections on liver-directed gene transfer in macaques. Mol Ther 18:126–134. doi: 10.1038/mt.2009.245 PubMedCrossRefGoogle Scholar
  153. Wang J, Ozden I, Diagne M, Wagner F, Borton D, Brush B et al (2011) Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices. Conf Proc IEEE Eng Med Biol Soc 2011:7525–7528. doi: 10.1109/IEMBS.2011.6091855 PubMedGoogle Scholar
  154. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H et al (2014) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. doi: 10.1016/j.neures.2014.09.002 PubMedGoogle Scholar
  155. White E, Bienemann A, Megraw L, Bunnun C, Wyatt M, Taylor H et al (2012) Distribution properties of lentiviral vectors administered into the striatum by convection-enhanced delivery. Hum Gene Ther 23:115–127. doi: 10.1089/hum.2010.185 PubMedCrossRefGoogle Scholar
  156. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMedCrossRefGoogle Scholar
  157. Yazdan-Shahmorad A, Diaz-Botia C, Hanson TL, Kharazia V, Ledochowitsch P, Maharbiz MM et al (2016) A large-scale interface for optogenetic stimulation and recording in nonhuman primates. Neuron 89:927–939. doi: 10.1016/j.neuron.2016.01.013 PubMedCrossRefGoogle Scholar
  158. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34. doi: 10.1016/j.neuron.2011.06.004 PubMedCrossRefGoogle Scholar
  159. Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D et al (2013) Optogenetic dissection of entorhinal-hippocampal functional connectivity Science 340:1232627. doi: 10.1126/science.1232627 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Neurology, Yerkes National Primate Research Center, School of MedicineEmory UniversityAtlantaUSA
  2. 2.Udall Center of Excellence for Parkinson’s Disease ResearchEmory UniversityAtlantaUSA
  3. 3.Department of Neurology, School of MedicineEmory UniversityAtlantaUSA

Personalised recommendations