Skip to main content

Advertisement

Log in

Glutamate, T cells and multiple sclerosis

  • High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues. T cells express on their cell surface several types of functional GluRs, and so do few other immune cells. Furthermore, glutamate by itself activates resting normal human T cells, and induces/elevates key T cell functions, among them: T cell adhesion, chemotactic migration, cytokine secretion, gene expression and more. Glutamate has also potent effects on antigen/mitogen/cytokine-activated T cells. Furthermore, T cells can even produce and release glutamate, and affect other cells and themselves via their own glutamate. Multiple sclerosis (MS) and its animal model Experimental Autoimmune Encephalomyelitis (EAE) are mediated by autoimmune T cells. In MS and EAE, there are excess glutamate levels, and multiple abnormalities in glutamate degrading enzymes, glutamate transporters, glutamate receptors and glutamate signaling. Some GluR antagonists block EAE. Enhancer of mGluR4 protects from EAE via regulatory T cells (Tregs), while mGluR4 deficiency exacerbates EAE. The protective effect of mGluR4 on EAE calls for testing GluR4 enhancers in MS patients. Oral MS therapeutics, namely Fingolimod, dimethyl fumarate and their respective metabolites Fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. Furthermore, Fingolimod reduce glutamate-mediated intracortical excitability in relapsing–remitting MS. Glatiramer acetate -COPAXONE®, an immunomodulator drug for MS, reverses TNF-α-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents in EAE-afflicted mice. With regard to T cells of MS patients: (1) The cell surface expression of a specific GluR: the AMPA GluR3 is elevated in T cells of MS patients during relapse and with active disease, (2) Glutamate and AMPA (a selective agonist for glutamate/AMPA iGluRs) augment chemotactic migration of T cells of MS patients, (3) Glutamate augments proliferation of T cells of MS patients in response to myelin-derived proteins: MBP and MOG, (4) T cells of MS patients respond abnormally to glutamate, (5) Significantly higher proliferation values in response to glutamate were found in MS patients assessed during relapse, and in those with gadolinium (Gd)+ enhancing lesions on MRI. Furthermore, glutamate released from autoreactive T cells induces excitotoxic cell death of neurons. Taken together, the evidences accumulated thus far indicate that abnormal glutamate levels and signaling in the nervous system, direct activation of T cells by glutamate, and glutamate release by T cells, can all contribute to MS. This may be true also to other neurological diseases. It is postulated herein that the detrimental activation of autoimmune T cells by glutamate in MS could lead to: (1) Cytotoxicity in the CNS: T cell-mediated killing of neurons and glia cells, which would subsequently increase the extracellular glutamate levels, and by doing so increase the excitotoxicity mediated by excess glutamate, (2) Release of proinflammatory cytokines, e.g., TNFα and IFNγ that increase neuroinflammation. Finally, if excess glutamate, abnormal neuronal signaling, glutamate-induced activation of T cells, and glutamate release by T cells are indeed all playing a key detrimental role in MS, then optional therapeutic tolls include GluR antagonists, although these may have various side effects. In addition, an especially attractive therapeutic strategy is the novel and entirely different therapeutic approach to minimize excess glutamate and excitotoxicity, titled: ‘brain to blood glutamate scavenging’, designed to lower excess glutamate levels in the CNS by ‘pumping it out’ from the brain to the blood. The glutamate scavanging is achieved by lowering glutamate levels in the blood by intravenous injection of the blood enzyme glutamate oxaloacetate transaminase (GOT). The glutamate-scavenging technology, which is still experimental, validated so far for other brain pathologies, but not tested on MS or EAE yet, may be beneficial for MS too, since it could decrease both the deleterious effects of excess glutamate on neural cells, and the activation of autoimmune T cells by glutamate in the brain. The topic of glutamate scavenging, and also its potential benefit for MS, are discussed towards the end of the review, and call for research in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

CNS:

Central nervous system

DC:

Dendritic cell

EAE:

Experimental autoimmune encephalomyelitis

GluR:

Glutamate receptors

iGluRs:

Ionotropic glutamate receptors

Kainate:

2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine

mGluRs:

Metabotropic glutamate receptors

MS:

Multiple Sclerosis

NMDA:

N-methyl-d-aspartate

Teff:

Effector T cell

Treg:

Regulatory T cell

Th:

Helper T cell

References

  • Affaticati P, Mignen O, Jambou F, Potier MC, Klingel-Schmitt I, Degrouard J, Peineau S, Gouadon E, Collingridge GL, Liblau R, Capiod T, Cohen-Kaminsky S (2011) Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ 18:99–108

    Article  CAS  PubMed  Google Scholar 

  • Azevedo CJ, Kornak J, Chu P, Sampat M, Okuda DT, Cree BA, Nelson SJ, Hauser SL, Pelletier D (2014) In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 76:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldyrev AA, Kazey VI, Leinsoo TA, Mashkina AP, Tyulina OV, Johnson P, Tuneva JO, Chittur S, Carpenter DO (2004) Rodent lymphocytes express functionally active glutamate receptors. Biochem Biophys Res Commun 324:133–139

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Carpenter DO, Johnson P (2005) Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J Neurochem 95:913–918

    Article  CAS  PubMed  Google Scholar 

  • Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 121:971–979

    Article  CAS  Google Scholar 

  • Carvalho AS, Torres LB, Persike DS, Fernandes MJ, Amado D, Naffah-Mazzacoratti Mda G, Cavalheiro EA, da Silva AV (2011) Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int 58:385–390

    Article  CAS  PubMed  Google Scholar 

  • Chang PK, Verbich D, McKinney RA (2012) AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci 35:1908–1916

    Article  PubMed  Google Scholar 

  • Chiocchetti A, Miglio G, Mesturini R, Varsaldi F, Mocellin M, Orilieri E, Dianzani C, Fantozzi R, Dianzani U, Lombardi G (2006) Group I mGlu receptor stimulation inhibits activation-induced cell death of human T lymphocytes. Br J Pharmacol 148:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Z, Hablitz JJ (2000) Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res 879:88–92

    Article  CAS  PubMed  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277:14801–14811

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Dickman KG, Youssef JG, Mathew SM, Said SI (2004) Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity. Am J Respir Cell Mol Biol 30:139–144

    Article  CAS  PubMed  Google Scholar 

  • Divino Filho JC, Hazel SJ, Furst P, Bergstrom J, Hall K (1998) Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis. J Endocrinol 156:519–527

    Article  CAS  PubMed  Google Scholar 

  • Droge W, Eck HP, Betzler M, Schlag P, Drings P, Ebert W (1988) Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol 114:124–128

    Article  CAS  PubMed  Google Scholar 

  • Droge W, Murthy KK, Stahl-Hennig C, Hartung S, Plesker R, Rouse S, Peterhans E, Kinscherf R, Fischbach T, Eck HP (1993) Plasma amino acid dysregulation after lentiviral infection. AIDS Res Hum Retroviruses 9:807–809

    Article  CAS  PubMed  Google Scholar 

  • Eck HP, Drings P, Droge W (1989a) Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 115:571–574

    Article  CAS  PubMed  Google Scholar 

  • Eck HP, Frey H, Droge W (1989b) Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int Immunol 1:367–372

    Article  CAS  PubMed  Google Scholar 

  • Erdo SL, Schafer M (1991) Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur J Pharmacol 198:215–217

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Volpi C, Fazio F, Notartomaso S, Vacca C, Busceti C, Bicciato S, Battaglia G, Bruno V, Puccetti P, Fioretti MC, Nicoletti F, Grohmann U, Di Marco R (2010) Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat Med 16:897–902

    Article  CAS  PubMed  Google Scholar 

  • Fazio F, Zappulla C, Notartomaso S, Busceti C, Bessede A, Scarselli P, Vacca C, Gargaro M, Volpi C, Allegrucci M, Lionetto L, Simmaco M, Belladonna ML, Nicoletti F, Fallarino F (2014) Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology 81:237–243

    Article  CAS  PubMed  Google Scholar 

  • Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H (2007) Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147:412–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57:671–675

    Article  CAS  PubMed  Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res 319:103–164

    Article  CAS  PubMed  Google Scholar 

  • Gammon JM, Tostanoski LH, Adapa AR, Chiu YC, Jewell CM (2015) Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. J Control Release 210:169–178

    Article  CAS  PubMed  Google Scholar 

  • Ganor Y, Levite M (2012) Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In: Levite M (ed) Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system. Springer, Vienna

    Google Scholar 

  • Ganor Y, Levite M (2014) The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm 121:983–1006

    Article  CAS  PubMed  Google Scholar 

  • Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170:4362–4372

    Article  CAS  PubMed  Google Scholar 

  • Ganor Y, Teichberg VI, Levite M (2007) TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178:683–692

    Article  CAS  PubMed  Google Scholar 

  • Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M (2009) Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk Lymphoma 50:985–997

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Banerjee R, Kipnis J (2008) Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 180:3866–3873

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Rossi S, Studer V, Motta C, De Chiara V, Musella A, Sepman H, Fresegna D, Musumeci G, Grasselli G, Haji N, Weiss S, Hayardeny L, Mandolesi G, Centonze D (2013) Glatiramer acetate protects against inflammatory synaptopathy in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 8:651–663

    Article  PubMed  Google Scholar 

  • Gill SS, Pulido OM (2001) Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 29:208–223

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Sgro V, Friars D, Gibala MJ (2000) Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. Am J Physiol Endocrinol Metab 278:E83–E89

    CAS  PubMed  Google Scholar 

  • Grasselli G, Rossi S, Musella A, Gentile A, Loizzo S, Muzio L, Di Sanza C, Errico F, Musumeci G, Haji N, Fresegna D, Sepman H, De Chiara V, Furlan R, Martino G, Usiello A et al (2013) Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br J Pharmacol 168:502–517

    Article  CAS  PubMed  Google Scholar 

  • Gregory KJ, Noetzel MJ, Niswender CM (2013) Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 115:61–121

    Article  CAS  PubMed  Google Scholar 

  • Groom AJ, Smith T, Turski L (2003) Multiple sclerosis and glutamate. Ann N Y Acad Sci 993:229–275 (discussion 287–288)

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, Filser A, Vetter T, Milkova L, Korporal M, Fritz B, Storch-Hagenlocher B, Krammer PH, Suri-Payer E, Wildemann B (2005) Reduced suppressive effect of CD4+ CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Fritzsching B, Trubswetter P, Korporal M, Milkova L, Fritz B, Vobis D, Krammer PH, Suri-Payer E, Wildemann B (2007) Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol 179:1322–1330

    Article  CAS  PubMed  Google Scholar 

  • Hardin-Pouzet H, Krakowski M, Bourbonniere L, Didier-Bazes M, Tran E, Owens T (1997) Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20:79–85

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Ogita K, Takeuchi Y, Ohashi H, Maruyama T, Yoneda Y (2001) Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem Int 38:277–285

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  PubMed  Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  CAS  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29

    Article  CAS  PubMed  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  CAS  PubMed  Google Scholar 

  • Korn T, Magnus T, Jung S (2005) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J 19:1878–1880

    CAS  PubMed  Google Scholar 

  • Kostanyan IA, Merkulova MI, Navolotskaya EV, Nurieva RI (1997) Study of interaction between L-glutamate and human blood lymphocytes. Immunol Lett 58:177–180

    Article  CAS  PubMed  Google Scholar 

  • Kostic M, Dzopalic T, Zivanovic S, Zivkovic N, Cvetanovic A, Stojanovic I, Vojinovic S, Marjanovic G, Savic V, Colic M (2014) IL-17 and glutamate excitotoxicity in the pathogenesis of multiple sclerosis. Scand J Immunol 79:181–186

    Article  CAS  PubMed  Google Scholar 

  • Kvaratskhelia E, Maisuradze E, Dabrundashvili NG, Natsvlishvili N, Zhuravliova E, Mikeladze DG (2009) N-Methyl-d-aspartate and sigma-ligands change the production of interleukins 8 and 10 in lymphocytes through modulation of the NMDA glutamate receptor. Neuroimmunomodulation 16:201–207

    Article  CAS  PubMed  Google Scholar 

  • Landi D, Vollaro S, Pellegrino G, Mulas D, Ghazaryan A, Falato E, Pasqualetti P, Rossini PM, Filippi MM (2015) Oral fingolimod reduces glutamate-mediated intracortical excitability in relapsing-remitting multiple sclerosis. Clin Neurophysiol 126:165–169

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz A, Boyko M, Shapira Y, Zlotnik A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13:10041–10066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6:89–97

    Article  CAS  PubMed  Google Scholar 

  • Levite Teichberg M, Riederer P (2014) Glutamate and Vivian Teichberg: a story about science, medicine, memory and love. J Neural Transm (Vienna) 121:793–796

    Article  Google Scholar 

  • Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361:302–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Hou X, Qi Q, Wang L, Luo L, Yang S, Zhang Y, Miao Z, Zhang Y, Wang F, Wang H, Huang W, Wang Z, Shen Y, Wang Y (2014) Scavenging of blood glutamate for enhancing brain-to-blood glutamate efflux. Mol Med Rep 9:305–310

    CAS  PubMed  Google Scholar 

  • Lombardi G, Dianzani C, Miglio G, Canonico PL, Fantozzi R (2001) Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol 133:936–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi G, Miglio G, Canonico PL, Naldi P, Comi C, Monaco F (2003) Abnormal response to glutamate of T lymphocytes from multiple sclerosis patients. Neurosci Lett 340:5–8

    Article  CAS  PubMed  Google Scholar 

  • Luchtman D, Gollan R, Ellwardt E, Birkenstock J, Robohm K, Siffrin V, Zipp F (2016) In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J Neurochem 136:971–980

    Article  CAS  PubMed  Google Scholar 

  • Mandolesi G, Gentile A, Musella A, Centonze D (2015) IL-1beta dependent cerebellar synaptopathy in a mouse mode of multiple sclerosis. Cerebellum 14:19–22

    Article  CAS  PubMed  Google Scholar 

  • Mashkina AP, Tyulina OV, Solovyova TI, Kovalenko EI, Kanevski LM, Johnson P, Boldyrev AA (2007) The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem Int 51:356–360

    Article  CAS  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Domercq M, Fogarty DJ, Pascual de Zulueta M, Sanchez-Gomez MV (1999) On how altered glutamate homeostasis may contribute to demyelinating diseases of the CNS. Adv Exp Med Biol 468:97–107

    CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antiguedad A, Perez-Cerda F (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15:282–288

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML (2011) Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr Opin Neurobiol 21:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276

    Article  CAS  PubMed  Google Scholar 

  • Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:S14–S23

    CAS  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    CAS  PubMed  Google Scholar 

  • Melzer N, Hicking G, Bittner S, Bobak N, Gobel K, Herrmann AM, Wiendl H, Meuth SG (2013) Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter. J Neuroinflamm 10:121

    Article  CAS  Google Scholar 

  • Midgett CR, Gill A, Madden DR (2012) Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation. Front Mol Neurosci 4:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miglio G, Varsaldi F, Lombardi G (2005) Human T lymphocytes express N-methyl-d-aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun 338:1875–1883

    Article  CAS  PubMed  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

    Article  CAS  PubMed  Google Scholar 

  • Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61

    Article  PubMed  Google Scholar 

  • Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noori-Zadeh A, Mesbah-Namin SA, Bistoon-Beigloo S, Bakhtiyari S, Abbaszadeh HA, Darabi S, Rajabibazl M, Abdanipour A (2016) Regulatory T cell number in multiple sclerosis patients: a meta-analysis. Mult Scler Relat Disord 5:73–76

    Article  PubMed  Google Scholar 

  • Ohgoh M, Hanada T, Smith T, Hashimoto T, Ueno M, Yamanishi Y, Watanabe M, Nishizawa Y (2002) Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J Neuroimmunol 125:170–178

    Article  CAS  PubMed  Google Scholar 

  • Ollenschlager G, Karner J, Karner-Hanusch J, Jansen S, Schindler J, Roth E (1989) Plasma glutamate–a prognostic marker of cancer and of other immunodeficiency syndromes? Scand J Clin Lab Invest 49:773–777

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, Ciruela F, Casado V, Mallol J, Gallart T, Lluis C, Franco R (2004) Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J Biol Chem 279:33352–33358

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R (2006) Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol 177:6695–6704

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T-cell mediated immunity. J Neuroimmunol 185:9–19

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19

    Article  CAS  PubMed  Google Scholar 

  • Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198

    Article  CAS  PubMed  Google Scholar 

  • Pankratz S, Ruck T, Meuth SG, Wiendl H (2016) CD4(+)HLA-G(+) regulatory T cells: molecular signature and pathophysiological relevance. Hum Immunol 77:727–733

    Article  CAS  PubMed  Google Scholar 

  • Paul C, Bolton C (2002) Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-d-aspartate receptor antagonist memantine. J Pharmacol Exp Ther 302:50–57

    Article  CAS  PubMed  Google Scholar 

  • Perez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, Menendez P, Castillo J, Campos F (2014) Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis 5:e992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162

    Article  CAS  PubMed  Google Scholar 

  • Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-d-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22:2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  PubMed  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173:278–286

    Article  CAS  PubMed  Google Scholar 

  • Poulopoulou C, Markakis I, Davaki P, Nikolaou C, Poulopoulos A, Raptis E, Vassilopoulos D (2005) Modulation of voltage-gated potassium channels in human T lymphocytes by extracellular glutamate. Mol Pharmacol 67:856–867

    Article  CAS  PubMed  Google Scholar 

  • Poulopoulou C, Papadopoulou-Daifoti Z, Hatzimanolis A, Fragiadaki K, Polissidis A, Anderzanova E, Davaki P, Katsiari CG, Sfikakis PP (2008) Glutamate levels and activity of the T cell voltage-gated potassium Kv1.3 channel in patients with systemic lupus erythematosus. Arthritis Rheum 58:1445–1450

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JD, Amory DW, Grocott HP, White WD, Newman MF (2002) Change in plasma glutamate concentration during cardiac surgery is a poor predictor of cognitive outcome. J Cardiothorac Vasc Anesth 16:431–436

    Article  PubMed  Google Scholar 

  • Rezzani R, Corsetti G, Rodella L, Angoscini P, Lonati C, Bianchi R (2003) Cyclosporine—A treatment inhibits the expression of metabotropic glutamate receptors in rat thymus. Acta Histochem 105:81–87

    Article  CAS  PubMed  Google Scholar 

  • Ruban A, Berkutzki T, Cooper I, Mohar B, Teichberg VI (2012) Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas. Invest New Drugs 30:2226–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban A, Mohar B, Jona G, Teichberg VI (2014) Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab 34:221–227

    Article  CAS  PubMed  Google Scholar 

  • Ruban A, Biton IE, Markovich A, Mirelman D (2015) MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures. Int J Mol Sci 16:3226–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    Article  PubMed  Google Scholar 

  • Sarchielli P, Di Filippo M, Candeliere A, Chiasserini D, Mattioni A, Tenaglia S, Bonucci M, Calabresi P (2007) Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 188:146–158

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129

    Article  CAS  PubMed  Google Scholar 

  • Saussez S, Laumbacher B, Chantrain G, Rodriguez A, Gu S, Wank R, Levite M (2014) Towards neuroimmunotherapy for cancer: the neurotransmitters glutamate, dopamine and GnRH-II augment substantially the ability of T cells of few head and neck cancer patients to perform spontaneous migration, chemotactic migration and migration towards the autologous tumor, and also elevate markedly the expression of CD3zeta and CD3epsilon TCR-associated chains. J Neural Transm 121:1007–1027

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    Article  CAS  PubMed  Google Scholar 

  • Spencer T, Biederman J, Coffey B, Geller D, Faraone S, Wilens T (2001) Tourette disorder and ADHD. Adv Neurol 85:57–77

    CAS  PubMed  Google Scholar 

  • Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, Ikonomidou C (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132:435–445

    Article  CAS  PubMed  Google Scholar 

  • Stepulak A, Rola R, Polberg K, Ikonomidou C (2014) Glutamate and its receptors in cancer. J Neural Transm 121:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stojanovic IR, Kostic M, Ljubisavljevic S (2014) The role of glutamate and its receptors in multiple sclerosis. J Neural Transm 121:945–955

    Article  CAS  PubMed  Google Scholar 

  • Storto M, de Grazia U, Battaglia G, Felli MP, Maroder M, Gulino A, Ragona G, Nicoletti F, Screpanti I, Frati L, Calogero A (2000) Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J Neuroimmunol 109:112–120

    Article  CAS  PubMed  Google Scholar 

  • Sturgill JL, Mathews J, Scherle P, Conrad DH (2011) Glutamate signaling through the kainate receptor enhances human immunoglobulin production. J Neuroimmunol 233(1–2):80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulkowski G, Dabrowska-Bouta B, Struzynska L (2013) Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors. Biomed Res Int 2013:186068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179

    Article  CAS  PubMed  Google Scholar 

  • Teichberg VI (2011) GOT to rid the body of excess glutamate. J Cereb Blood Flow Metab 31:1376–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158:301–308

    Article  CAS  PubMed  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Perez-Cerda F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    Article  CAS  PubMed  Google Scholar 

  • Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739

    Article  CAS  PubMed  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Article  CAS  PubMed  Google Scholar 

  • Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27:321–328

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, Brotfain E, Klin Y, Shapira Y, Teichberg VI (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol 21:235–241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Levite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levite, M. Glutamate, T cells and multiple sclerosis. J Neural Transm 124, 775–798 (2017). https://doi.org/10.1007/s00702-016-1661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1661-z

Keywords

Navigation