Journal of Neural Transmission

, Volume 123, Issue 12, pp 1359–1367 | Cite as

Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer’s disease

  • Saeed Sadigh-Eteghad
  • Alireza MajdiEmail author
  • Javad Mahmoudi
  • Samad E. J. Golzari
  • Mahnaz Talebi
Translational Neurosciences - Review Article


It is increasingly recognized that astrocytes and microglia-associated dysfunction contribute to AD pathology. In addition, glial nicotinic acetylcholine receptors (nAChRs) play a role in AD-related phenomena, such as neuron survival, synaptic plasticity, and memory. From mechanistic point of view, the glial regulation of pro-inflammatory cytokines, as common contributors in AD, is modulated by nAChRs. Astrocytic and microglial nAChRs contribute to Aβ metabolism, including Aβ phagocytosis and degradation as well as Aβ-related oxidative stress and neurotoxicity. These receptors are also involved in neurotransmission and gliotransmission through indirect interaction with N-Methyl-d-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) receptors as well as gamma-aminobutyric acid (GABA) and intracellular calcium regulation. In addition, glial nAChRs participate in trophic factors-induced neuroprotection. This review gathers the most recent advances along with the previous data on astrocytic and microglial nAChRs role in AD pathogenesis.


Astrocyte Microglia Nicotinic acetylcholine receptors Alzheimer’s disease 



The authors would like to express their gratitude to Dr. Mehdi Farhoudi, director of Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.


  1. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778CrossRefPubMedGoogle Scholar
  2. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677CrossRefPubMedGoogle Scholar
  3. Banerjee J, Alkondon M, Pereira EF, Albuquerque EX (2012) Regulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid. J Pharmacol Exp Ther 341:500–509CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, Ferraro L (2013) Kynurenic acid, by targeting alpha7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci 37:1470–1477. doi: 10.1111/ejn.12160 CrossRefPubMedGoogle Scholar
  5. Brawek B, Garaschuk O (2013) Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 53:159–169CrossRefPubMedGoogle Scholar
  6. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440CrossRefPubMedGoogle Scholar
  7. De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2:4CrossRefPubMedPubMedCentralGoogle Scholar
  8. Della Bianca V, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999) β-Amyloid Activates the O-2 Forming NADPH Oxidase in Microglia, Monocytes, and neutrophils A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 274:15493–15499CrossRefGoogle Scholar
  9. Depino AM et al (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742CrossRefPubMedGoogle Scholar
  10. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340. doi: 10.1006/exnr.1997.6738 CrossRefPubMedGoogle Scholar
  11. Dorey E, Chang N, Liu QY, Yang Z, Zhang W (2014) Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull 30:317–330CrossRefPubMedGoogle Scholar
  12. Eikelenboom P, Veerhuis R, Scheper W, Rozemuller A, Van Gool W, Hoozemans J (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695CrossRefPubMedGoogle Scholar
  13. Fields RD (2013) Neuroscience: map the other brain. Nature 501:25–27CrossRefPubMedPubMedCentralGoogle Scholar
  14. Filipcik P, Cente M, Ferencik M, Hulin I, Novak M (2006) The role of oxidative stress in the pathogenesis of Alzheimer’s disease. Bratislavske lekarske listy 107:384–394PubMedGoogle Scholar
  15. Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia Neurosurgery 60:940–948. doi: 10.1227/01.NEU.0000255448.97730.34. (discussion 940948)
  16. Gordon GR, Iremonger KJ, Kantevari S, Ellis-Davies GC, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391–403CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354CrossRefPubMedGoogle Scholar
  18. Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71:155–165CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32:12337–12348CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guan Y-Z et al (2015) Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol 51:1480–1488CrossRefPubMedGoogle Scholar
  21. Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211. doi: 10.2478/v10039-010-0023-6 CrossRefPubMedGoogle Scholar
  22. Hensley K (2010) Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimer’s Dis JAD 21:1–14. doi: 10.3233/JAD-2010-1414 PubMedGoogle Scholar
  23. Hilmas C, Pereira E, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque E (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  24. Hua S, Ek CJ, Mallard C, Johansson ME (2014) Perinatal hypoxia-ischemia reduces α7 nicotinic receptor expression and selective α7 nicotinic receptor stimulation suppresses inflammation and promotes microglial mox phenotype. Biomed Res IntGoogle Scholar
  25. Hung J, Chansard M, Ousman SS, Nguyen MD, Colicos MA (2010) Activation of microglia by neuronal activity: results from a new in vitro paradigm based on neuronal-silicon interfacing technology. Brain Behav Immun 24:31–40CrossRefPubMedGoogle Scholar
  26. Jo S et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20:886–896CrossRefPubMedGoogle Scholar
  27. Kalashnyk O, Lykhmus O, Oliinyk O, Komisarenko S, Skok M (2014) α7 Nicotinic acetylcholine receptor-specific antibody stimulates interleukin-6 production in human astrocytes through p38-dependent pathway. Int Immunopharmacol 23:475–479CrossRefPubMedGoogle Scholar
  28. Kamynina AV, Holmström KM, Koroev DO, Volpina OM, Abramov AY (2013) Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity. Int J Biochem Cell Biol 45:899–907CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiol Microglia Physiol Rev 91:461–553CrossRefPubMedGoogle Scholar
  30. Kim EJ, Kwon KJ, Park JY, Lee SH, Moon CH, Baik EJ (2002) Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J Neurosci Res 70:97–107CrossRefPubMedGoogle Scholar
  31. Kim SY, Moon JH, Lee HG, Kim SU, Lee YB (2007) ATP released from β-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 39:820–827CrossRefPubMedGoogle Scholar
  32. Konishi Y, Yang L-B, He P, Lindholm K, Lu B, Li R, Shen Y (2014) Deficiency of GDNF receptor GFRα1 in Alzheimer’s neurons results in neuronal death. J Neurosci Res 34:13127–13138Google Scholar
  33. Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells (BBA). Mol Cell Res 1813:992–1002Google Scholar
  34. Laudenbach V, Medja F, Zoli M, Rossi FM, Evrard P, Changeux J-P, Gressens P (2002) Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries. FASEB J 16:423–425PubMedGoogle Scholar
  35. Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14:21–32CrossRefPubMedGoogle Scholar
  36. Lee L, Kosuri P, Arancio O (2014) Picomolar amyloid-beta peptides enhance spontaneous astrocyte calcium transients. J Alzheimer’s Dis JAD 38:49–62. doi: 10.3233/JAD-130740 PubMedGoogle Scholar
  37. Levi G, Minghetti L, Aloisi F (1998) Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 80:899–904CrossRefPubMedGoogle Scholar
  38. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci Off J Soc Neurosci 31:6627–6638. doi: 10.1523/JNEUROSCI.0203-11.2011 CrossRefGoogle Scholar
  39. Li Z, Cao J, Ren X, Zhao Q, Zhou M, Zang W (2013) Nicotine protects dopaminergic neurons against lipopolysaccharide-induced damage through a7 nAChRs in microglia. Life Sci J 10Google Scholar
  40. Liu Y et al (2012) α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation 9:2094–2099Google Scholar
  41. Liu Y et al (2015) Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 91:87–96CrossRefPubMedGoogle Scholar
  42. Lopes C, Pereira EF, Wu H-Q, Purushottamachar P, Njar V, Schwarcz R, Albuquerque EX (2007) Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at α7 nicotinic receptors. J Pharmacol Exp Ther 322:48–58CrossRefPubMedGoogle Scholar
  43. Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012) Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J Neurosci 32:7651–7661CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lutz JA, Kulshrestha M, Rogers DT, Littleton JM (2014) A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia 98:11–21CrossRefPubMedPubMedCentralGoogle Scholar
  45. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689. doi: 10.1038/ncpneuro0355 CrossRefPubMedGoogle Scholar
  46. Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M (2010) Inositol 1, 4, 5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 32:1668–1677CrossRefPubMedGoogle Scholar
  47. Mencel M, Nash M, Jacobson C (2013) Neuregulin upregulates microglial α7 nicotinic acetylcholine receptor expression in immortalized cell lines: implications for regulating neuroinflammation. PLoS One 8:e70338CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17:6932–6941CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moon JH, Kim SY, Lee HG, Kim SU, Lee YB (2008) Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia. Exp Mol Med 40:11–18CrossRefPubMedPubMedCentralGoogle Scholar
  50. Morioka N et al (2014) Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor. Neuroscience 258:374–384CrossRefPubMedGoogle Scholar
  51. Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971:197–209CrossRefPubMedGoogle Scholar
  52. Navarrete M, Perea G, de Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10:e1001259CrossRefPubMedPubMedCentralGoogle Scholar
  53. Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46:1167–1177CrossRefPubMedGoogle Scholar
  54. Oikawa H, Nakamichi N, Kambe Y, Ogura M, Yoneda Y (2005) An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res 79:535–544CrossRefPubMedGoogle Scholar
  55. Oz M, E Lorke D, S Yang KH, Petroianu G (2013) On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr Alzheimer Res 10:618–630CrossRefPubMedGoogle Scholar
  56. Palop JJ, Mucke L (2010) Amyloid-[beta]-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818CrossRefPubMedPubMedCentralGoogle Scholar
  57. Parada E et al (2013) The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19:1135–1148CrossRefPubMedPubMedCentralGoogle Scholar
  58. Parpura V, Verkhratsky A (2012) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept ASN neuro 4:AN20120019Google Scholar
  59. Parpura V et al (2012) Glial cells in (patho) physiology. J Neurochem 121:4–27CrossRefPubMedPubMedCentralGoogle Scholar
  60. Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82:931–942CrossRefPubMedGoogle Scholar
  61. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203CrossRefPubMedGoogle Scholar
  62. Perea G, Sur M, Araque A (2014a) Neuron-glia networks: integral gear of brain functionGoogle Scholar
  63. Perea G, Yang A, Boyden ES, Sur M (2014b) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5Google Scholar
  64. Perez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14:1220–1224CrossRefPubMedGoogle Scholar
  65. Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56:154–163. doi: 10.1002/glia.20599 CrossRefPubMedGoogle Scholar
  66. Pirttimaki TM et al (2013) α7 nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS One 8:e81828CrossRefPubMedPubMedCentralGoogle Scholar
  67. Placzek AN, Zhang TA, Dani JA (2009) Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 30:752–760CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535CrossRefPubMedGoogle Scholar
  69. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545. doi: 10.1523/JNEUROSCI.2692-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pym L, Kemp M, Raymond-Delpech V, Buckingham S, Boyd C, Sattelle D (2005) Subtype-specific actions of β-amyloid peptides on recombinant human neuronal nicotinic acetylcholine receptors (α7, α4β2, α3β4) expressed in Xenopus laevis oocytes. Br J Pharmacol 146:964–971CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415CrossRefPubMedGoogle Scholar
  72. Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SE, Sabermarouf B, Mahmoudi J (2014) Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J Med Hypotheses Ideas 8:49–52Google Scholar
  73. Sadigh-Eteghad S, Majdi A, Talebi M, Mahmoudi J, Babri S (2015a) Regulation of nicotinic acetylcholine receptors in Alzheimers disease: a possible role of chaperones. Eur J Pharmacol 755:34–41. doi: 10.1016/j.ejphar.2015.02.047 CrossRefPubMedGoogle Scholar
  74. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J (2015b) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract Int J Kuwait Univ Health Sci Centre 24:1–10. doi: 10.1159/000369101 Google Scholar
  75. Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (2015c) Selective activation of α 7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ 25–35-mediated cognitive deficits in mice. Neuroscience 298:81–93CrossRefPubMedGoogle Scholar
  76. Sanz-Blasco S, Piña-Crespo J, Talantova M, Lipton S (2010) Abeta-mediated glutamate release from astrocytes. Alzheimers Dement 6:S398CrossRefGoogle Scholar
  77. Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H (2011) Transmitter-and hormone-activated Ca 2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca 2+ sensor. Cell Calcium 49:365–375CrossRefPubMedGoogle Scholar
  78. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci 98:4148–4153CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shteingauz A, Cohen E, Biala Y, Treinin M (2009) The BTB-MATH protein BATH-42 interacts with RIC-3 to regulate maturation of nicotinic acetylcholine receptors. J Cell Sci 122:807–812CrossRefPubMedGoogle Scholar
  80. Shytle RD et al (2004) Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem 89:337–343CrossRefPubMedGoogle Scholar
  81. Shytle D, Tah J, Sanberg P (2006) Cholinergic modulation of microglial activation via alpha-7 nicotinic receptors. Google PatentsGoogle Scholar
  82. Silver J, Schwab ME, Popovich PG (2014) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harbor Perspect Biol. doi: 10.1101/cshperspect.a020602 Google Scholar
  83. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35CrossRefPubMedGoogle Scholar
  84. Sotelo C (2003) Viewing the brain through the master hand of Ramon y Cajal. Nat Rev Neurosci 4:71–77CrossRefPubMedGoogle Scholar
  85. St John PA (2009) Cellular trafficking of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30:656–662CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stahnisch FW, Bulloch AG (2011) Mihály (Michael von) Lenhossék (1863–1937). J Neurol 258:1901–1903CrossRefPubMedGoogle Scholar
  87. Straten G, Eschweiler GW, Maetzler W, Laske C, Leyhe T (2009) Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J Alzheimer’s Dis JAD 18:331–337PubMedGoogle Scholar
  88. Suzuki T et al (2006) Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83:1461–1470CrossRefPubMedGoogle Scholar
  89. Takarada T et al (2012) Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell line-derived neurotrophic factor in astrocytes. J Neurosci Res 90:2074–2085CrossRefPubMedGoogle Scholar
  90. Takata K et al (2010) Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285:40180–40191CrossRefPubMedPubMedCentralGoogle Scholar
  91. Teaktong T et al (2003) Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211CrossRefPubMedGoogle Scholar
  92. Temburni MK, Jacob MH (2001) New functions for glia in the brain PANS 98:3631–3632Google Scholar
  93. Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C (2011) Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190CrossRefPubMedGoogle Scholar
  94. Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L (2013) Antioxidant activity of galantamine and some of its derivatives. Curr Med Chem 20:4595–4608CrossRefPubMedGoogle Scholar
  95. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305CrossRefPubMedGoogle Scholar
  96. Vallés AS, Barrantes FJ (2012) Chaperoning α7 neuronal nicotinic acetylcholine receptors (BBA). Biomembranes 1818:718–729Google Scholar
  97. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42:1291–1301. doi: 10.1042/BST20140107 CrossRefPubMedGoogle Scholar
  98. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640CrossRefPubMedGoogle Scholar
  99. Wang H et al (2003) Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421:384–388CrossRefPubMedGoogle Scholar
  100. Wang X, Lippi G, Carlson DM, Berg DK (2013) Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J Neurochem 127:632–643CrossRefPubMedPubMedCentralGoogle Scholar
  101. Watters JJ, Pocock JM (2014) Microglial physiology. In: Microglia in health and disease. Springer, pp 47–79Google Scholar
  102. Wessler I, Reinheimer T, Klapproth H, Schneider F-J, Racké K, Hammer R (1997) Mammalian glial cells in culture synthesize acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 356:694–697CrossRefPubMedGoogle Scholar
  103. Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600CrossRefPubMedGoogle Scholar
  104. Yakel JL (2012) Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity. Nicotine Tob Res 14:1249–1257CrossRefPubMedPubMedCentralGoogle Scholar
  105. Yu W-F, Guan Z-Z, Bogdanovic N, Nordberg A (2005a) High selective expression of α7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225CrossRefPubMedGoogle Scholar
  106. Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005b) High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225. doi: 10.1016/j.expneurol.2004.12.015 CrossRefPubMedGoogle Scholar
  107. Yu W, Mechawar N, Krantic S, Chabot J-G, Quirion R (2012) Upregulation of astrocytic α7 nicotinic receptors in Alzheimer’s disease brain-possible relevant to amyloid pathology. Mol Neurodegener. doi: 10.1186/1750-1326-7-S1-O7 PubMedGoogle Scholar
  108. Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76:855–864CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Saeed Sadigh-Eteghad
    • 1
  • Alireza Majdi
    • 1
    Email author
  • Javad Mahmoudi
    • 1
  • Samad E. J. Golzari
    • 2
  • Mahnaz Talebi
    • 1
  1. 1.Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
  2. 2.Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran

Personalised recommendations