Skip to main content

Advertisement

Log in

Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer’s disease

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

It is increasingly recognized that astrocytes and microglia-associated dysfunction contribute to AD pathology. In addition, glial nicotinic acetylcholine receptors (nAChRs) play a role in AD-related phenomena, such as neuron survival, synaptic plasticity, and memory. From mechanistic point of view, the glial regulation of pro-inflammatory cytokines, as common contributors in AD, is modulated by nAChRs. Astrocytic and microglial nAChRs contribute to Aβ metabolism, including Aβ phagocytosis and degradation as well as Aβ-related oxidative stress and neurotoxicity. These receptors are also involved in neurotransmission and gliotransmission through indirect interaction with N-Methyl-d-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) receptors as well as gamma-aminobutyric acid (GABA) and intracellular calcium regulation. In addition, glial nAChRs participate in trophic factors-induced neuroprotection. This review gathers the most recent advances along with the previous data on astrocytic and microglial nAChRs role in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Alkondon M, Pereira EF, Albuquerque EX (2012) Regulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid. J Pharmacol Exp Ther 341:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, Ferraro L (2013) Kynurenic acid, by targeting alpha7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci 37:1470–1477. doi:10.1111/ejn.12160

    Article  PubMed  Google Scholar 

  • Brawek B, Garaschuk O (2013) Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 53:159–169

    Article  CAS  PubMed  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della Bianca V, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999) β-Amyloid Activates the O-2 Forming NADPH Oxidase in Microglia, Monocytes, and neutrophils A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 274:15493–15499

    Article  CAS  Google Scholar 

  • Depino AM et al (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742

    Article  PubMed  Google Scholar 

  • DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340. doi:10.1006/exnr.1997.6738

    Article  CAS  PubMed  Google Scholar 

  • Dorey E, Chang N, Liu QY, Yang Z, Zhang W (2014) Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull 30:317–330

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller A, Van Gool W, Hoozemans J (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Fields RD (2013) Neuroscience: map the other brain. Nature 501:25–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Filipcik P, Cente M, Ferencik M, Hulin I, Novak M (2006) The role of oxidative stress in the pathogenesis of Alzheimer’s disease. Bratislavske lekarske listy 107:384–394

    CAS  PubMed  Google Scholar 

  • Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia Neurosurgery 60:940–948. doi:10.1227/01.NEU.0000255448.97730.34. (discussion 940948)

  • Gordon GR, Iremonger KJ, Kantevari S, Ellis-Davies GC, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71:155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32:12337–12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y-Z et al (2015) Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol 51:1480–1488

    Article  CAS  PubMed  Google Scholar 

  • Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211. doi:10.2478/v10039-010-0023-6

    Article  CAS  PubMed  Google Scholar 

  • Hensley K (2010) Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimer’s Dis JAD 21:1–14. doi:10.3233/JAD-2010-1414

    CAS  PubMed  Google Scholar 

  • Hilmas C, Pereira E, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque E (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  • Hua S, Ek CJ, Mallard C, Johansson ME (2014) Perinatal hypoxia-ischemia reduces α7 nicotinic receptor expression and selective α7 nicotinic receptor stimulation suppresses inflammation and promotes microglial mox phenotype. Biomed Res Int

  • Hung J, Chansard M, Ousman SS, Nguyen MD, Colicos MA (2010) Activation of microglia by neuronal activity: results from a new in vitro paradigm based on neuronal-silicon interfacing technology. Brain Behav Immun 24:31–40

    Article  CAS  PubMed  Google Scholar 

  • Jo S et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20:886–896

    Article  CAS  PubMed  Google Scholar 

  • Kalashnyk O, Lykhmus O, Oliinyk O, Komisarenko S, Skok M (2014) α7 Nicotinic acetylcholine receptor-specific antibody stimulates interleukin-6 production in human astrocytes through p38-dependent pathway. Int Immunopharmacol 23:475–479

    Article  CAS  PubMed  Google Scholar 

  • Kamynina AV, Holmström KM, Koroev DO, Volpina OM, Abramov AY (2013) Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity. Int J Biochem Cell Biol 45:899–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiol Microglia Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kwon KJ, Park JY, Lee SH, Moon CH, Baik EJ (2002) Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J Neurosci Res 70:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Moon JH, Lee HG, Kim SU, Lee YB (2007) ATP released from β-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 39:820–827

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Yang L-B, He P, Lindholm K, Lu B, Li R, Shen Y (2014) Deficiency of GDNF receptor GFRα1 in Alzheimer’s neurons results in neuronal death. J Neurosci Res 34:13127–13138

    CAS  Google Scholar 

  • Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells (BBA). Mol Cell Res 1813:992–1002

    CAS  Google Scholar 

  • Laudenbach V, Medja F, Zoli M, Rossi FM, Evrard P, Changeux J-P, Gressens P (2002) Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries. FASEB J 16:423–425

    CAS  PubMed  Google Scholar 

  • Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14:21–32

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Kosuri P, Arancio O (2014) Picomolar amyloid-beta peptides enhance spontaneous astrocyte calcium transients. J Alzheimer’s Dis JAD 38:49–62. doi:10.3233/JAD-130740

    CAS  PubMed  Google Scholar 

  • Levi G, Minghetti L, Aloisi F (1998) Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 80:899–904

    Article  CAS  PubMed  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci Off J Soc Neurosci 31:6627–6638. doi:10.1523/JNEUROSCI.0203-11.2011

    Article  CAS  Google Scholar 

  • Li Z, Cao J, Ren X, Zhao Q, Zhou M, Zang W (2013) Nicotine protects dopaminergic neurons against lipopolysaccharide-induced damage through a7 nAChRs in microglia. Life Sci J 10

  • Liu Y et al (2012) α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation 9:2094–2099

    Google Scholar 

  • Liu Y et al (2015) Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 91:87–96

    Article  CAS  PubMed  Google Scholar 

  • Lopes C, Pereira EF, Wu H-Q, Purushottamachar P, Njar V, Schwarcz R, Albuquerque EX (2007) Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at α7 nicotinic receptors. J Pharmacol Exp Ther 322:48–58

    Article  CAS  PubMed  Google Scholar 

  • Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012) Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J Neurosci 32:7651–7661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz JA, Kulshrestha M, Rogers DT, Littleton JM (2014) A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia 98:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689. doi:10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  • Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M (2010) Inositol 1, 4, 5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 32:1668–1677

    Article  PubMed  Google Scholar 

  • Mencel M, Nash M, Jacobson C (2013) Neuregulin upregulates microglial α7 nicotinic acetylcholine receptor expression in immortalized cell lines: implications for regulating neuroinflammation. PLoS One 8:e70338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17:6932–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JH, Kim SY, Lee HG, Kim SU, Lee YB (2008) Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia. Exp Mol Med 40:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morioka N et al (2014) Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor. Neuroscience 258:374–384

    Article  CAS  PubMed  Google Scholar 

  • Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971:197–209

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Perea G, de Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10:e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Oikawa H, Nakamichi N, Kambe Y, Ogura M, Yoneda Y (2005) An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res 79:535–544

    Article  CAS  PubMed  Google Scholar 

  • Oz M, E Lorke D, S Yang KH, Petroianu G (2013) On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr Alzheimer Res 10:618–630

    Article  CAS  PubMed  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-[beta]-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada E et al (2013) The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19:1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parpura V, Verkhratsky A (2012) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept ASN neuro 4:AN20120019

  • Parpura V et al (2012) Glial cells in (patho) physiology. J Neurochem 121:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82:931–942

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Sur M, Araque A (2014a) Neuron-glia networks: integral gear of brain function

  • Perea G, Yang A, Boyden ES, Sur M (2014b) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5

  • Perez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56:154–163. doi:10.1002/glia.20599

    Article  PubMed  Google Scholar 

  • Pirttimaki TM et al (2013) α7 nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS One 8:e81828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placzek AN, Zhang TA, Dani JA (2009) Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 30:752–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  • Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545. doi:10.1523/JNEUROSCI.2692-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pym L, Kemp M, Raymond-Delpech V, Buckingham S, Boyd C, Sattelle D (2005) Subtype-specific actions of β-amyloid peptides on recombinant human neuronal nicotinic acetylcholine receptors (α7, α4β2, α3β4) expressed in Xenopus laevis oocytes. Br J Pharmacol 146:964–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SE, Sabermarouf B, Mahmoudi J (2014) Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J Med Hypotheses Ideas 8:49–52

  • Sadigh-Eteghad S, Majdi A, Talebi M, Mahmoudi J, Babri S (2015a) Regulation of nicotinic acetylcholine receptors in Alzheimers disease: a possible role of chaperones. Eur J Pharmacol 755:34–41. doi:10.1016/j.ejphar.2015.02.047

    Article  CAS  PubMed  Google Scholar 

  • Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J (2015b) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract Int J Kuwait Univ Health Sci Centre 24:1–10. doi:10.1159/000369101

    Google Scholar 

  • Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (2015c) Selective activation of α 7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ 25–35-mediated cognitive deficits in mice. Neuroscience 298:81–93

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Blasco S, Piña-Crespo J, Talantova M, Lipton S (2010) Abeta-mediated glutamate release from astrocytes. Alzheimers Dement 6:S398

    Article  Google Scholar 

  • Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H (2011) Transmitter-and hormone-activated Ca 2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca 2+ sensor. Cell Calcium 49:365–375

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci 98:4148–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shteingauz A, Cohen E, Biala Y, Treinin M (2009) The BTB-MATH protein BATH-42 interacts with RIC-3 to regulate maturation of nicotinic acetylcholine receptors. J Cell Sci 122:807–812

    Article  CAS  PubMed  Google Scholar 

  • Shytle RD et al (2004) Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem 89:337–343

    Article  CAS  PubMed  Google Scholar 

  • Shytle D, Tah J, Sanberg P (2006) Cholinergic modulation of microglial activation via alpha-7 nicotinic receptors. Google Patents

  • Silver J, Schwab ME, Popovich PG (2014) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harbor Perspect Biol. doi:10.1101/cshperspect.a020602

    Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Sotelo C (2003) Viewing the brain through the master hand of Ramon y Cajal. Nat Rev Neurosci 4:71–77

    Article  CAS  PubMed  Google Scholar 

  • St John PA (2009) Cellular trafficking of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahnisch FW, Bulloch AG (2011) Mihály (Michael von) Lenhossék (1863–1937). J Neurol 258:1901–1903

    Article  PubMed  Google Scholar 

  • Straten G, Eschweiler GW, Maetzler W, Laske C, Leyhe T (2009) Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J Alzheimer’s Dis JAD 18:331–337

    CAS  PubMed  Google Scholar 

  • Suzuki T et al (2006) Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83:1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Takarada T et al (2012) Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell line-derived neurotrophic factor in astrocytes. J Neurosci Res 90:2074–2085

    Article  CAS  PubMed  Google Scholar 

  • Takata K et al (2010) Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285:40180–40191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teaktong T et al (2003) Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211

    Article  PubMed  Google Scholar 

  • Temburni MK, Jacob MH (2001) New functions for glia in the brain PANS 98:3631–3632

    CAS  Google Scholar 

  • Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C (2011) Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L (2013) Antioxidant activity of galantamine and some of its derivatives. Curr Med Chem 20:4595–4608

    Article  CAS  PubMed  Google Scholar 

  • Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    Article  CAS  PubMed  Google Scholar 

  • Vallés AS, Barrantes FJ (2012) Chaperoning α7 neuronal nicotinic acetylcholine receptors (BBA). Biomembranes 1818:718–729

  • Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42:1291–1301. doi:10.1042/BST20140107

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2003) Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lippi G, Carlson DM, Berg DK (2013) Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J Neurochem 127:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watters JJ, Pocock JM (2014) Microglial physiology. In: Microglia in health and disease. Springer, pp 47–79

  • Wessler I, Reinheimer T, Klapproth H, Schneider F-J, Racké K, Hammer R (1997) Mammalian glial cells in culture synthesize acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 356:694–697

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600

    Article  CAS  PubMed  Google Scholar 

  • Yakel JL (2012) Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity. Nicotine Tob Res 14:1249–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W-F, Guan Z-Z, Bogdanovic N, Nordberg A (2005a) High selective expression of α7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225

    Article  CAS  PubMed  Google Scholar 

  • Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005b) High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225. doi:10.1016/j.expneurol.2004.12.015

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Mechawar N, Krantic S, Chabot J-G, Quirion R (2012) Upregulation of astrocytic α7 nicotinic receptors in Alzheimer’s disease brain-possible relevant to amyloid pathology. Mol Neurodegener. doi:10.1186/1750-1326-7-S1-O7

    PubMed  Google Scholar 

  • Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76:855–864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. Mehdi Farhoudi, director of Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Majdi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadigh-Eteghad, S., Majdi, A., Mahmoudi, J. et al. Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer’s disease. J Neural Transm 123, 1359–1367 (2016). https://doi.org/10.1007/s00702-016-1580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1580-z

Keywords

Navigation