Skip to main content

Advertisement

Log in

Comparison of baroreflex sensitivity estimated from ECG R–R and inter-systolic intervals obtained by finger plethysmography and radial tonometry

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Spontaneous BRS estimates may considerable vary according to the technique of blood pressure and heart rate assessment. To optimise and standardise BRS estimation for clinical use we evaluated possible differences between spontaneous BRS indices estimated from either finger plethysmography or radial tonometry. Forty-five healthy volunteers underwent simultaneous recordings of electrocardiogram, finger plethysmography and radial tonometry in supine position and during 60° head-up tilt. BRS was computed by spectral analysis from either R–R time series and/or arterial pressure pulse. Radial tonometry generated higher mean BRS estimates than finger plethysmography. The difference decreased upon postural change from supine to upright. In the upright position, BRS estimates based on R–R interval proved to be generally lower compared to BRS indices estimated from arterial pressure pulse. The ratio of low-to-high-frequency power of inter-systolic interval and systolic blood pressure from tonometry was lower than that from plethysmography in supine and approximated in upright position. Spectral parameters of inter-systolic interval and R–R interval did not differ in supine but diverged in upright position. Changes of spectral parameters were most pronounced in R–R interval. Arterial pressure pulse is adequate for estimation of BRS under resting conditions but it may distort BRS estimates under physical load. We, therefore, recommend using an ECG signal for BRS estimation especially in non-stationary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BRS:

Baroreflex sensitivity

ECG:

Electrocardiogram

IBI:

Inter-beat interval

ISI:

Inter-systolic interval (pulse interval)

MTRS:

Multiple trigonometric regressive spectral analysis

RRI:

R–R interval

RRI-PLE:

BRS estimated from ECG R-wave tracking and systolic pressure pulse of finger plethysmography

RRI-TON:

BRS estimated from ECG R-wave tracking and systolic pressure pulse of radial tonometry

ISI-PLE:

BRS estimated from systolic pressure pulse of finger plethysmography

ISI-TON:

BRS estimated from systolic pressure pulse of radial tonometry

References

  • Bernardi L, Spallone V, Stevens M, et al (2011) Investigation methods for cardiac autonomic function in human research studies. Diabetes Metab Res Rev 27(7):654–664

    Article  PubMed  Google Scholar 

  • Berntson GG, Bigger JT Jr, Eckberg DL et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  • Constant I, Laude D, Murat I et al (1999) Pulse rate variability is not a surrogate for heart rate variability. Clin Sci (Lond) 97(4):391–397

    Article  CAS  Google Scholar 

  • Gasch J, Reimann M, Reichmann H et al (2011) Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis. PLoS One 6(3):e18061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39(2):246–253

    Article  PubMed  Google Scholar 

  • Imholz BP, Wieling W, van Montfrans GA et al (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616

    Article  CAS  PubMed  Google Scholar 

  • Kemmotsu O, Ueda M, Otsuka H et al (1991) Blood pressure measurement by arterial tonometry in controlled hypotension. Anesth Analg 73(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Hohnloser SH et al (2001) Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 103(16):2072–2077

    Article  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Raczak G (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13(2):191–207

    Article  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Maestri R et al (2009) Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol 53(2):193–199

    Article  PubMed  Google Scholar 

  • Laude D, Weise F, Girard A et al (1995) Spectral analysis of systolic blood pressure and heart rate oscillations related to respiration. Clin Exp Pharmacol Physiol 22(5):352–357

    Article  CAS  PubMed  Google Scholar 

  • Laude D, Elghozi JL, Girard A et al (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol 286(1):R226–R231

    Article  CAS  PubMed  Google Scholar 

  • London GM (2008) Brachial arterial pressure to assess cardiovascular structural damage: an overview and lessons from clinical trials. J Nephrol 21(1):23–31

    PubMed  Google Scholar 

  • Ludbrook J (1997) Comparing methods of measurements. Clin Exp Pharmacol Physiol 24(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook J (2002) Statistical techniques for comparing measurers and methods of measurement: a critical review. Clin Exp Pharmacol Physiol 29(7):527–536

    Article  CAS  PubMed  Google Scholar 

  • Nelesen RA, Dimsdale JE (2002) Use of radial arterial tonometric continuous blood pressure measurement in cardiovascular reactivity studies. Blood Press Monit 7(5):259–263

    Article  PubMed  Google Scholar 

  • Omboni S, Parati G, Frattola A et al (1993) Spectral and sequence analysis of finger blood pressure variability. Comparison with analysis of intra-arterial recordings. Hypertension 22(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Reyes del Paso GA, Gonzalez I, Hernandez JA (2004) Baroreceptor sensitivity and effectiveness varies differentially as a function of cognitive-attentional demands. Biol Psychol 67(3):385–395

    Article  PubMed  Google Scholar 

  • Reyes del Paso GA, Gonzalez MI, Hernandez JA (2010) Comparison of baroreceptor cardiac reflex sensitivity estimates from inter-systolic and ECG R–R intervals. Psychophysiol 47(6):1102–1108

    Google Scholar 

  • Rüdiger H, Klinghammer L, Scheuch K (1999) The trigonometric regressive spectral analysis–a method for mapping of beat-to-beat recorded cardiovascular parameters on to frequency domain in comparison with Fourier transformation. Comput Methods Programs Biomed 58(1):1–15

    Article  PubMed  Google Scholar 

  • Saul JP, Berger RD, Albrecht P et al (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 261(4 Pt 2):H1231–H1245

    CAS  PubMed  Google Scholar 

  • Swenne CA (2013) Baroreflex sensitivity: mechanisms and measurement. Neth Heart J 21(2):58–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins LL, Fainman C, Dimsdale J et al (1995) Assessment of baroreflex control from beat-to-beat blood pressure and heart rate changes: a validation study. Psychophysiology 32(4):411–414

    Article  CAS  PubMed  Google Scholar 

  • Wesseling KH, Jansen JR, Settels JJ et al (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74(5):2566–2573

    CAS  PubMed  Google Scholar 

  • Westerhof BE, Gisolf J, Karemaker JM et al (2006) Time course analysis of baroreflex sensitivity during postural stress. Am J Physiol Heart Circ Physiol 291(6):H2864–H2874

    Article  CAS  PubMed  Google Scholar 

  • Ziemssen T, Gasch J, Ruediger H (2008) Influence of ECG Sampling Frequency on Spectral Analysis of RR Intervals and Baroreflex Sensitivity Using the EUROBAVAR Data set. J Clin Monit Comput 22(2):159–168

    Article  PubMed  Google Scholar 

  • (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circ 93(5):1043–1065

Download references

Acknowledgments

We would like to thank all participants of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manja Reimann.

Ethics declarations

Funding

This work was supported by the University Hospital Carl Gustav Carus of the Technische Universität Dresden.

Conflict of interest

The authors have nothing to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viehweg, J., Reimann, M., Gasch, J. et al. Comparison of baroreflex sensitivity estimated from ECG R–R and inter-systolic intervals obtained by finger plethysmography and radial tonometry. J Neural Transm 123, 481–490 (2016). https://doi.org/10.1007/s00702-016-1535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1535-4

Keywords

Navigation