Skip to main content
Log in

CNTNAP2 gene in high functioning autism: no association according to family and meta-analysis approaches

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The Contactin Associated Protein-like 2 (CNTNAP2) gene has been discussed to be associated with different symptoms of autism spectrum disorders (ASDs) and other neurodevelopmental disorders. We aimed to elucidate the genetic association of CNTNAP2 within high functioning ASD (HFA), focusing on autism specific symptoms and reducing intelligence related factors. Furthermore, we compared our findings conducting a meta-analysis in patients with ASD and HFA only. A case–control association study was performed for HFA (HFA, n = 105; controls, n = 133). Moreover, we performed a family-based association study (DFAM) analysis (HFA, n = 44; siblings, n = 57). Individuals were genotyped for the two most frequently reported single nucleotide polymorphisms (SNPs) in the CNTNAP2 gene (rs2710102, rs7794745). Furthermore, a meta-analysis using the MIX2 software integrated our results with previously published data. A significant association for the carriers of the T-allele of the rs7794745 with HFA was found in the case–control sample [OR = 1.547; (95 % CI 1.056–2.266); p = 0.025]. No association could be found by DFAM with any of the CNTNAP2 SNPs with HFA. The meta-analysis of both SNPs did not show a significant association with either ASD or with HFA. Overall, including case–control, sibs, and meta-analysis, we could not detect any significant association with the CNTNAP2 gene and HFA. Our results point in the direction that CNTNAP2 may not play a major role in HFA, but rather seems to have a significance in neurodevelopmental disorders or in individuals displaying intellectual delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADHD:

Attention deficit/hyperactivity disorder

ADI-R:

Autism diagnosis interview-revised

ADOS:

Autism diagnosis observation schedule

ASD:

Autism spectrum disorder

BP:

Base pair

CASPR2:

Contactin-associated protein-2

CDFE:

Cortical dysplasia-focal epilepsy

CFT:

Culture fair test

CNTN6:

Contactin 6

CNTNAP2:

Contactin associated protein-like 2

ICD-10:

International statistical classification of diseases and related health problems, 10th Revision

DNA:

Deoxyribonucleic acid

ID:

Intellectual disability

HFA:

High functioning autism

FOXP2:

Forkhead box protein P2

DFAM:

Family-based association for disease traits

IQ:

Intelligence quotient

SON-R:

Snijders-oomen non-verbal intelligence test

SNP:

Single nucleotide polymorphism

TDT:

Transmission disequilibrium test

References

  • Abrahams BS, Tentler D, Perederiy JV, Oldham MC, Coppola G, Geschwind DH (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci USA 104(45):17849–17854. doi:10.1073/pnas.0706128104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82(1):150–159. doi:10.1016/j.ajhg.2007.09.005

    Article  PubMed Central  PubMed  Google Scholar 

  • American Psychiatric Association: DSM-IV (1996) Diagnostic and statistical manual of mental disorders. 4th edn. APA, Washington DC

  • American Psychiatric Association: DSM-5 (2013) Diagnostic and statistical manual of mental disorders. 5th edn. APA, Washington DC

  • Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Sykes N, Pagnamenta AT, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Carson AR, Casallo G, Casey J, Chu SH, Cochrane L, Corsello C, Crawford EL, Crossett A, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le Couteur A, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Melhem NM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Piven J, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Wing K, Wittemeyer K, Wood S, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Betancur C, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Gallagher L, Geschwind DH, Gill M, Haines JL, Miller J, Monaco AP, Nurnberger JI Jr, Paterson AD, Pericak-Vance MA, Schellenberg GD, Scherer SW, Sutcliffe JS, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Devlin B, Ennis S, Hallmayer J (2010) A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19(20):4072–4082. doi:10.1093/hmg/ddq307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Casey J, Conroy J, Correia C, Corsello C, Crawford EL, de Jonge M, Delorme R, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Gilbert J, Gillberg C, Glessner JT, Green A, Green J, Guter SJ, Heron EA, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Jacob S, Kenny GP, Kim C, Kolevzon A, Kustanovich V, Lajonchere CM, Lamb JA, Law-Smith M, Leboyer M, Le Couteur A, Leventhal BL, Liu XQ, Lombard F, Lord C, Lotspeich L, Lund SC, Magalhaes TR, Mantoulan C, McDougle CJ, Melhem NM, Merikangas A, Minshew NJ, Mirza GK, Munson J, Noakes C, Nygren G, Papanikolaou K, Pagnamenta AT, Parrini B, Paton T, Pickles A, Posey DJ, Poustka F, Ragoussis J, Regan R, Roberts W, Roeder K, Roge B, Rutter ML, Schlitt S, Shah N, Sheffield VC, Soorya L, Sousa I, Stoppioni V, Sykes N, Tancredi R, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Vorstman JA, Wallace S, Wing K, Wittemeyer K, Wood S, Zurawiecki D, Zwaigenbaum L, Bailey AJ, Battaglia A, Cantor RM, Coon H, Cuccaro ML, Dawson G, Ennis S, Freitag CM, Geschwind DH, Haines JL, Klauck SM, McMahon WM, Maestrini E, Miller J, Monaco AP, Nelson SF, Nurnberger JI Jr, Oliveira G, Parr JR, Pericak-Vance MA, Piven J, Schellenberg GD, Scherer SW, Vicente AM, Wassink TH, Wijsman EM, Betancur C, Buxbaum JD, Cook EH, Gallagher L, Gill M, Hallmayer J, Paterson AD, Sutcliffe JS, Szatmari P, Vieland VJ, Hakonarson H, Devlin B (2012) Individual common variants exert weak effects on the risk for autism spectrum disorderspi. Hum Mol Genet 21(21):4781–4792. doi:10.1093/hmg/dds301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82(1):160–164. doi:10.1016/j.ajhg.2007.09.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77

    Article  CAS  PubMed  Google Scholar 

  • Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368(9531):210–215. doi:10.1016/S0140-6736(06)69041-7

    Article  PubMed  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87(6):1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Bishop DV, Price TS, Dale PS, Plomin R (2003) Outcomes of early language delay: II. Etiology of transient and persistent language difficulties. J Speech Lang Hear Res JSLHR 46(3):561–575

    Article  PubMed  Google Scholar 

  • Bölte S, Poustka F (2006) Fragebogen zur Sozialen Kommunikation—Autismus-Screening; Deutsche Fassung des Social Communication Questionnaire (SCQ). Verlag Hans Huber, Bern, Switzerland

    Google Scholar 

  • Bölte S, Poustka F (2007) Skala zur Erfassung sozialer Reaktivitiät—Dimensionale Autismus-Diagnostik; Deutsche Fassung der Social Responsiveness Scale (SRS). In: Constantino J, Gruber C (eds) Verlag Hans Huber, Bern, Swizterland

  • Bölte S, Rühl D, Schmötzer G, Poustka F (2006) Diagnostisches Interview für Autismus—Revidiert (ADI-R); Deutsche Fassung des Autism Diagnostic Interview—Revised. Verlag Hans Huber, Switzerland

  • Buxbaum JD (2009) Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin Neurosci 11(1):35–43

    PubMed Central  PubMed  Google Scholar 

  • Carpenter LA, Soorya L, Halpern D (2009) Asperger’s syndrome and high-functioning autism. Pediatr Ann 38(1):30–35

    Article  PubMed  Google Scholar 

  • Chen JA, Peñagarikano, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111–144. doi:10.1146/annurev-pathol-012414-040405

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti AG, Kopp M, Waltes R, Haslinger D, Duketis E, Jarczok TA, Poustka F, Voran A, Graab U, Meyer J, Klauck SM, Fulda S, Freitag CM (2014) Variants of the CNTNAP2 5′ promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatr. doi:10.1038/mp.2014.103

    Google Scholar 

  • Döpfner M, Plück J, Bölte S, Lenz K, Melchers P, Heim K (eds) (1998) Arbeitsgruppe Kinder- und Jugendlichen- und Familiendiagnostik: Child Behavior Checklist (CBCL); Elternfragebogen über das Verhalten von Kindern und Jugendlichen, 2nd edn. Arbeitsgruppe Kinder-, Jugend- und Familiendiagnostik KJFD, Köln

  • Folstein SE, Rosen-Sheidley B (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2(12):943–955. doi:10.1038/35103559

    Article  CAS  PubMed  Google Scholar 

  • Freitag CM (2011) Genetic risk in autism: new associations and clinical testing. Expert Opin Med Diagn 5(4):347–356. doi:10.1517/17530059.2011.579101

    Article  PubMed  Google Scholar 

  • Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R (2010) Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 19(3):169–178. doi:10.1007/s00787-009-0076-x

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102. doi:10.1001/archgenpsychiatry.2011.76

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337. doi:10.1212/01.wnl.0000252807.38124.a3

    Article  CAS  PubMed  Google Scholar 

  • Horvath S, Laird NM (1998) A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am J Hum Genet 63(6):1886–1897. doi:10.1086/302137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, Moreno-De-Luca D, Yu TW, Fombonne E, Geschwind D, Grice DE, Ledbetter DH, Lord C, Mane SM, Martin CL, Martin DM, Morrow EM, Walsh CA, Melhem NM, Chaste P, Sutcliffe JS, State MW, Cook EH Jr, Roeder K, Devlin B (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3(1):9. doi:10.1186/2040-2392-3-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273(5280):1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Lai MC, Baron-Cohen S, Buxbaum JD (2015) Understanding autism in the light of sex/gender. Mol Autism 6:24. doi:10.1186/s13229-015-0021-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374(9701):1627–1638. doi:10.1016/S0140-6736(09)61376-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Hu Z, He Y, Xiong Z, Long Z, Peng Y, Bu F, Ling J, Xun G, Mo X, Pan Q, Zhao J, Xia K (2010) Association analysis of CNTNAP2 polymorphisms with autism in the Chinese Han population. Psychiatr Genet 20(3):113–117. doi:10.1097/YPG.0b013e32833a216f

    PubMed  Google Scholar 

  • Losh M, Sullivan PF, Trembath D, Piven J (2008) Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol 67(9):829–837. doi:10.1097/NEN.0b013e318184482d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNealy K, Mazziotta JC, Dapretto M (2006) Cracking the language code: neural mechanisms underlying speech parsing. J Neurosci Off J Soc Neurosci 26(29):7629–7639. doi:10.1523/JNEUROSCI.5501-05.2006

    Article  CAS  Google Scholar 

  • Miles JH (2011) Autism spectrum disorders–a genetics review. Genet Med Off J Am Coll Med Genet 13(4):278–294. doi:10.1097/GIM.0b013e3181ff67ba

    Google Scholar 

  • Nakabayashi K, Scherer SW (2001) The human contactin-associated protein-like 2 gene (CNTNAP2) spans over 2 Mb of DNA at chromosome 7q35. Genomics 73(1):108–112. doi:10.1006/geno.2001.6517

    Article  CAS  PubMed  Google Scholar 

  • Noterdaeme M, Wriedt E, Hohne C (2010) Asperger’s syndrome and high-functioning autism: language, motor and cognitive profiles. Eur Child Adolesc Psychiatry 19(6):475–481. doi:10.1007/s00787-009-0057-0

    Article  PubMed  Google Scholar 

  • Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grunblatt E (2014) Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J Mol Psychiatry 2(1):1. doi:10.1186/2049-9256-2-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Peñagarikano O, Geschwind DH (2012) What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med 18(3):156–163. doi:10.1016/j.molmed.2012.01.003

    Article  PubMed Central  PubMed  Google Scholar 

  • Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147(1):235–246. doi:10.1016/j.cell.2011.08.040

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrin AL, Giacheti CM, Maximino LP, Abramides DV, Zanchetta S, Rossi NF, Richieri-Costa A, Murray JC (2010) Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet Part A 152A(12):3164–3172. doi:10.1002/ajmg.a.33749

    Article  PubMed Central  PubMed  Google Scholar 

  • Poot M (2014) A candidate gene association study further corroborates involvement of contactin genes in autism. Mol Syndromol 5(5):229–235. doi:10.1159/000362891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poot M, Beyer V, Schwaab I, Damatova N, Van’t Slot R, Prothero J, Holder SE, Haaf T (2010) Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 11(1):81–89. doi:10.1007/s10048-009-0205-1

    Article  PubMed  Google Scholar 

  • Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T (2011) Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res 135(3–4):228–240. doi:10.1159/000334064

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19(1):149–150

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi:10.1086/519795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodenas-Cuadrado P, Ho J, Vernes SC (2014) Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Human Genet EJHG 22(2):171–178. doi:10.1038/ejhg.2013.100

    Article  CAS  PubMed  Google Scholar 

  • Rossi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A, Ciccone R, Giorda R, Toniolo D, Maraschio P, Zuffardi O (2008) A 12 Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51(6):631–638. doi:10.1016/j.ejmg.2008.06.010

    Article  PubMed  Google Scholar 

  • Rühl D, Bölte S, Feineis-Matthews S, Poutka F (2004) Diagnostische Beobachtungsskala für Autistische Störungen; Deutsche Fassung der Autism Diagnostic Observation Schedule (ADOS). Verlag Hans Huber Switzerland

  • Sampath S, Bhat S, Gupta S, O’Connor A, West AB, Arking DE, Chakravarti A (2013) Defining the contribution of CNTNAP2 to autism susceptibility. PLoS One 8(10):e77906. doi:10.1371/journal.pone.0077906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott-Van Zeeland AA, Abrahams BS, Alvarez-Retuerto AI, Sonnenblick LI, Rudie JD, Ghahremani D, Mumford JA, Poldrack RA, Dapretto M, Geschwind DH, Bookheimer SY (2010) Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science translational medicine 2(56):56ra80. doi:10.1126/scitranslmed.3001344

  • Sizoo B, van den Brink W, Franke B, Vasquez AA, van Wijngaarden-Cremers P, van der Gaag RJ (2010) Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders? World J Biol Psychiatr Off J World Fed Soc Biol Psychiatr 11(5):699–708. doi:10.3109/15622975.2010.480985

    Article  Google Scholar 

  • Steer CD, Golding J, Bolton PF (2010) Traits contributing to the autistic spectrum. PLoS One 5(9):e12633. doi:10.1371/journal.pone.0012633

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein MB, Yang BZ, Chavira DA, Hitchcock CA, Sung SC, Shipon-Blum E, Gelernter J (2011) A common genetic variant in the neurexin superfamily member CNTNAP2 is associated with increased risk for selective mutism and social anxiety-related traits. Biol Psychiatry 69(9):825–831. doi:10.1016/j.biopsych.2010.11.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New Engl J Med 354(13):1370–1377. doi:10.1056/NEJMoa052773

    Article  CAS  PubMed  Google Scholar 

  • Sutera S, Pandey J, Esser EL, Rosenthal MA, Wilson LB, Barton M, Green J, Hodgson S, Robins DL, Dumont-Mathieu T, Fein D (2007) Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. J Autism Dev Disord 37(1):98–107. doi:10.1007/s10803-006-0340-6

    Article  PubMed  Google Scholar 

  • Tellegen P, Winkel M, Laros J (2003) Snijders oomen non-verbal intelligence test revised (SON-R). Hofgrefe-Verlag, Göttingen, Germany

  • Toma C, Hervas A, Torrico B, Balmana N, Salgado M, Maristany M, Vilella E, Martinez-Leal R, Planelles MI, Cusco I, del Campo M, Perez-Jurado LA, Caballero-Andaluz R, de Diego-Otero Y, Perez-Costillas L, Ramos-Quiroga JA, Ribases M, Bayes M, Cormand B (2013) Analysis of two language-related genes in autism: a case-control association study of FOXP2 and CNTNAP2. Psychiatr Genet 23(2):82–85. doi:10.1097/YPG.0b013e32835d6fc6

    Article  CAS  PubMed  Google Scholar 

  • Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA, Tourette Syndrome Association International Consortium for G (2003) CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 82(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE (2008) A functional genetic link between distinct developmental language disorders. New Engl J Med 359(22):2337–2345. doi:10.1056/NEJMoa0802828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkmar FR, Lord C, Bailey A, Schultz RT, Klin A (2004) Autism and pervasive developmental disorders. J Child Psychol Psychiatry 45(1):135–170

    Article  PubMed  Google Scholar 

  • Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PM, Kim CE, Hou C, Frackelton E, Chiavacci R, Takahashi N, Sakurai T, Rappaport E, Lajonchere CM, Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI, Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, Owley T, Sweeney JA, Brune CW, Cantor RM, Bernier R, Gilbert JR, Cuccaro ML, McMahon WM, Miller J, State MW, Wassink TH, Coon H, Levy SE, Schultz RT, Nurnberger JI, Haines JL, Sutcliffe JS, Cook EH, Minshew NJ, Buxbaum JD, Dawson G, Grant SF, Geschwind DH, Pericak-Vance MA, Schellenberg GD, Hakonarson H (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246):528–533. doi:10.1038/nature07999

  • Weiss R (2006) CFT 20-R: grundintelligenztest skala 2-revision. Hofgrefe-Verlag, Göttingen

  • World Health Organization (2008) ICD-10: International statistical classification of diseases and related health problems (10th Rev.ed.) 10th edn. World Health Organization, New York, NY, USA

Download references

Acknowledgments

We thank all participants who took part in this study for their important contribution and willingness. We thank Miryame Hofmann for her technical assistance. The study was partially supported by the “Studienstiftung Deutschland” for EB and the “Bundesprogramm Chancengleichheit” 2009–2011 of the University Zurich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edna Grünblatt or Susanne Walitza.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

E. Grünblatt and S. Walitza contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werling, A.M., Bobrowski, E., Taurines, R. et al. CNTNAP2 gene in high functioning autism: no association according to family and meta-analysis approaches. J Neural Transm 123, 353–363 (2016). https://doi.org/10.1007/s00702-015-1458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1458-5

Keywords

Navigation