Advertisement

Journal of Neural Transmission

, Volume 123, Issue 1, pp 57–64 | Cite as

Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease

  • Christiana Ossig
  • Angelo Antonini
  • Carsten Buhmann
  • Joseph Classen
  • Ilona Csoti
  • Björn Falkenburger
  • Michael Schwarz
  • Jürgen Winkler
  • Alexander StorchEmail author
Neurology and Preclinical Neurological Studies - Review Article

Abstract

Effective management and development of new treatment strategies of motor symptoms in Parkinson’s disease (PD) largely depend on clinical rating instruments like the Unified PD rating scale (UPDRS) and the modified abnormal involuntary movement scale (mAIMS). Regarding inter-rater variability and continuous monitoring, clinical rating scales have various limitations. Patient-administered questionnaires such as the PD home diary to assess motor stages and fluctuations in late-stage PD are frequently used in clinical routine and as clinical trial endpoints, but diary/questionnaire are tiring, and recall bias impacts on data quality, particularly in patients with cognitive dysfunction or depression. Consequently, there is a strong need for continuous and objective monitoring of motor symptoms in PD for improving therapeutic regimen and for usage in clinical trials. Recent advances in battery technology, movement sensors such as gyroscopes, accelerometers and information technology boosted the field of objective measurement of movement in everyday life and medicine using wearable sensors allowing continuous (long-term) monitoring. This systematic review summarizes the current wearable sensor-based devices to objectively assess the various motor symptoms of PD.

Keywords

Parkinson’s disease (PD) Clinical scores Motor symptoms Objective measurement Accelerometer Gyroscope 

Notes

Compliance with ethical standards

Conflict of interest

Christiana Ossig has received a research grant from the German Research Foundation (DFG), speaker honorary from UCB Pharma and a travel grant from The Movement Disorder Society (MDS). Angelo Antonini, Joseph Classen, Björn Falkenburger, Michael Schwarz and Jürgen Winkler have nothing to disclose. Carsten Buhmann has received honoraria for presentations/lectures or advisory boards from GlaxoSmithKline, Orion Pharma, TEVA Pharma, UCB Pharma and Zambon. Ilona Csoti has received honoraria for presentations/lectures or advisory boards from Boehringer Ingelheim, Desitin, Orion, Lundbeck, Licher MT, MEDA Pharma, Novartis, TEVA and UCB Pharma. Alexander Storch has received unrestricted research grants from Boehringer Ingelheim, GKC Melbourne, UCB, and TEVA Pharma, honoraria for presentations/lectures or advisory boards from Cephalon, GE Health Care, Boehringer Ingelheim, GlaxoSmithKline, MEDA Pharma, Desitin, Pfizer, Novartis, Orion, Medtronic, Mundipharma, Britannia, AbbVie, TEVA, Lundbeck, and UCB Pharma, and consultancy fees from Boehringer Ingelheim, Britannia, GKC Melbourne, Merz and Mundipharma.

Supplementary material

702_2015_1439_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. Achey M, Aldred JL, Aljehani N, Bloem BR, Biglan KM, Chan P, Cubo E, Dorsey ER, Goetz CG, Guttman M, Hassan A, Khandhar SM, Mari Z, Spindler M, Tanner CM, van den Haak P, Walker R, Wilkinson JR (2014) The past, present, and future of telemedicine for Parkinson’s disease. Mov Disord 29(7):871–883. doi: 10.1002/mds.25903 PubMedCrossRefGoogle Scholar
  2. Bain PG, Findley LJ, Atchison P, Behari M, Vidailhet M, Gresty M, Rothwell JC, Thompson PD, Marsden CD (1993) Assessing tremor severity. J Neurol Neurosurg Psychiatry 56(8):868–873PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barth J, Klucken J, Kugler P, Kammerer T, Steidl R, Winkler J, Hornegger J, Eskofier B (2011) Biometric and mobile gait analysis for early diagnosis and therapy monitoring in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc 2011:868–871. doi: 10.1109/IEMBS.2011.6090226 PubMedGoogle Scholar
  4. Barth J, Sunkel M, Bergner K, Schickhuber G, Winkler J, Klucken J, Eskofier B (2012) Combined analysis of sensor data from hand and gait motor function improves automatic recognition of Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc 2012:5122–5125. doi: 10.1109/EMBC.2012.6347146 PubMedGoogle Scholar
  5. Bergmann JH, Chandaria V, McGregor A (2012) Wearable and implantable sensors: the patient’s perspective. Sensors (Basel) 12(12):16695–16709. doi: 10.3390/s121216695 CrossRefGoogle Scholar
  6. Bhidayasiri R, Petchrutchatachart S, Pongthornseri R, Anan C, Dumnin S, Thanawattano C (2014) Low-cost, 3-dimension, office-based inertial sensors for automated tremor assessment: technical development and experimental verification. J Parkinsons Dis 4(2):273–282. doi: 10.3233/JPD-130311 PubMedGoogle Scholar
  7. Checkoway H, Nelson LM (1999) Epidemiologic approaches to the study of Parkinson’s disease etiology. Epidemiology 10(3):327–336PubMedCrossRefGoogle Scholar
  8. Chien SL, Lin SZ, Liang CC, Soong YS, Lin SH, Hsin YL, Lee CW, Chen SY (2006) The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism Relat Disord 12(7):438–442. doi: 10.1016/j.parkreldis.2006.04.004 PubMedCrossRefGoogle Scholar
  9. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5):S21–S23PubMedGoogle Scholar
  10. Del Din S, Godfrey A, Rochester L (2015) Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: toward clinical and at home use. IEEE J Biomed Health Inform. doi: 10.1109/JBHI.2015.2419317 PubMedGoogle Scholar
  11. Deuschl G, Krack P, Lauk M, Timmer J (1996) Clinical neurophysiology of tremor. J Clin Neurophysiol 13(2):110–121PubMedCrossRefGoogle Scholar
  12. Deuschl G, Bain P, Brin M (1998) Consensus statement of the movement disorder society on tremor. Ad Hoc Sci Comm Mov Disord 13(Suppl 3):2–23Google Scholar
  13. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386. doi: 10.1212/01.wnl.0000247740.47667.03 PubMedCrossRefGoogle Scholar
  14. Fahn S, Elton RL, Committee UD (1987) The unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne DB (eds) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park, pp 293–304Google Scholar
  15. Fahn S, Tolosa E, Concepcion M (1993) Clinical rating scale for tremor. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders, 2nd edn. Williams and Wilkins, Baltimore, pp 271–280Google Scholar
  16. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351(24):2498–2508. doi: 10.1056/NEJMoa033447 PubMedCrossRefGoogle Scholar
  17. Goetz CG, Leurgans S, Hinson VK, Blasucci LM, Zimmerman J, Fan W, Nguyen T, Hsu A (2008a) Evaluating Parkinson’s disease patients at home: utility of self-videotaping for objective motor, dyskinesia, and ON-OFF assessments. Mov Disord 23(10):1479–1482. doi: 10.1002/mds.22127 PubMedCrossRefGoogle Scholar
  18. Goetz CG, Nutt JG, Stebbins GT (2008b) The unified dyskinesia rating scale: presentation and clinimetric profile. Mov Disord 23(16):2398–2403. doi: 10.1002/mds.22341 PubMedCrossRefGoogle Scholar
  19. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N (2008c) Movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. doi: 10.1002/mds.22340 PubMedCrossRefGoogle Scholar
  20. Gouelle A (2014) Use of functional ambulation performance score as measurement of gait ability: review. J Rehabil Res Dev 51(5):665–674. doi: 10.1682/JRRD.2013.09.0198 PubMedCrossRefGoogle Scholar
  21. Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J, Evans A, Kempster P, Raghav S, Horne MK (2012) Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis 2(1):47–55. doi: 10.3233/JPD-2012-11071 PubMedGoogle Scholar
  22. Hauser RA, Friedlander J, Zesiewicz TA, Adler CH, Seeberger LC, O’Brien CF, Molho ES, Factor SA (2000) A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clin Neuropharmacol 23(2):75–81PubMedCrossRefGoogle Scholar
  23. Hauser RA, Russ H, Haeger DA, Bruguiere-Fontenille M, Muller T, Wenning GK (2006) Patient evaluation of a home diary to assess duration and severity of dyskinesia in Parkinson disease. Clin Neuropharmacol 29(6):322–330. doi: 10.1097/01.WNF.0000229546.81245.7F PubMedCrossRefGoogle Scholar
  24. Horne MK, McGregor S, Bergquist F (2015) An objective fluctuation score for Parkinson’s disease. PLoS One 10(4):e0124522. doi: 10.1371/journal.pone.0124522 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jang W, Han J, Park J, Kim JS, Cho JW, Koh SB, Chung SJ, Kim IY, Kim HT (2013) Waveform analysis of tremor may help to differentiate Parkinson’s disease from drug-induced parkinsonism. Physiol Meas 34(3):N15–N24. doi: 10.1088/0967-3334/34/3/N15 PubMedCrossRefGoogle Scholar
  26. Keijsers NL, Horstink MW, van Hilten JJ, Hoff JI, Gielen CC (2000) Detection and assessment of the severity of levodopa-induced dyskinesia in patients with Parkinson’s disease by neural networks. Mov Disord 15(6):1104–1111PubMedCrossRefGoogle Scholar
  27. Keijsers NL, Horstink MW, Gielen SC (2003) Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov Disord 18(1):70–80. doi: 10.1002/mds.10310 PubMedCrossRefGoogle Scholar
  28. Klucken J, Barth J, Kugler P, Schlachetzki J, Henze T, Marxreiter F, Kohl Z, Steidl R, Hornegger J, Eskofier B, Winkler J (2013) Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease. PLoS One 8(2):e56956. doi: 10.1371/journal.pone.0056956 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lieber B, Taylor B, Appelboom G, McKhann G, Connolly ES Jr (2015) Motion sensors to assess and monitor medical and surgical management of Parkinson’s disease. World Neurosurg. doi: 10.1016/j.wneu.2015.03.024 Google Scholar
  30. Louter M, Maetzler W, Prinzen J, van Lummel RC, Hobert M, Arends JB, Bloem BR, Streffer J, Berg D, Overeem S, Liepelt-Scarfone I (2015) Accelerometer-based quantitative analysis of axial nocturnal movements differentiates patients with Parkinson’s disease, but not high-risk individuals, from controls. J Neurol Neurosurg Psychiatry 86(1):32–37. doi: 10.1136/jnnp-2013-306851 PubMedCrossRefGoogle Scholar
  31. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 28(12):1628–1637. doi: 10.1002/mds.25628 PubMedCrossRefGoogle Scholar
  32. May PR, Lee MA, Bacon RC (1983) Quantitative assessment of neuroleptic-induced extrapyramidal symptoms: clinical and nonclinical approaches. Clin Neuropharmacol 6(Suppl 1):S35–S51PubMedCrossRefGoogle Scholar
  33. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J (2001) The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil 82(3):419–425. doi: 10.1053/apmr.2001.19778 PubMedCrossRefGoogle Scholar
  34. Morris S, Morris ME, Iansek R (2001) Reliability of measurements obtained with the Timed “Up & Go” test in people with Parkinson disease. Phys Ther 81(2):810–818PubMedGoogle Scholar
  35. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A (2014) Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel) 14(2):3362–3394. doi: 10.3390/s140203362 CrossRefGoogle Scholar
  36. Nelson AJ, Zwick D, Brody S, Doran C, Pulver L, Rooz G, Sadownick M, Nelson R, Rothman J (2002) The validity of the GaitRite and the functional ambulation performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation 17(3):255–262PubMedGoogle Scholar
  37. Palmerini L, Mellone S, Avanzolini G, Valzania F, Chiari L (2013) Quantification of motor impairment in Parkinson’s disease using an instrumented timed up and go test. IEEE Trans Neural Syst Rehabil Eng 21(4):664–673. doi: 10.1109/TNSRE.2012.2236577 PubMedCrossRefGoogle Scholar
  38. Papapetropoulos SS (2012) Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials. CNS Neurosci Ther 18(5):380–387. doi: 10.1111/j.1755-5949.2011.00253.x PubMedCrossRefGoogle Scholar
  39. Patel S, Hughes R, Huggins N, Standaert D, Growdon J, Dy J, Bonato P (2008) Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson’s Disease. Conf Proc IEEE Eng Med Biol Soc 2008:3686–3689. doi: 10.1109/IEMBS.2008.4650009 PubMedGoogle Scholar
  40. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P (2009) Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans Inf Technol Biomed 13(6):864–873. doi: 10.1109/TITB.2009.2033471 PubMedCrossRefGoogle Scholar
  41. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148PubMedCrossRefGoogle Scholar
  42. Pulliam CL, Burack MA, Heldman DA, Giuffrida JP, Mera TO (2014) Motion sensor dyskinesia assessment during activities of daily living. J Parkinsons Dis 4(4):609–615. doi: 10.3233/JPD-140348 PubMedGoogle Scholar
  43. Pullman SL (1998) Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov Disord 13(Suppl 3):85–89PubMedGoogle Scholar
  44. Ramaker C, Marinus J, Stiggelbout AM, Van Hilten BJ (2002) Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 17(5):867–876. doi: 10.1002/mds.10248 PubMedCrossRefGoogle Scholar
  45. Stacy MA, Elble RJ, Ondo WG, Wu SC, Hulihan J (2007) Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor. Mov Disord 22(6):833–838. doi: 10.1002/mds.21412 PubMedCrossRefGoogle Scholar
  46. Stone AA, Shiffman S, Schwartz JE, Broderick JE, Hufford MR (2002) Patient non-compliance with paper diaries. BMJ 324(7347):1193–1194PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors (Basel) 12(2):2255–2283. doi: 10.3390/s120202255 CrossRefGoogle Scholar
  48. Tsipouras MG, Tzallas AT, Fotiadis DI, Konitsiotis S (2011) On automated assessment of Levodopa-induced dyskinesia in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc 2011:2679–2682. doi: 10.1109/IEMBS.2011.6090736 PubMedGoogle Scholar
  49. Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S (2012) An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med 55(2):127–135. doi: 10.1016/j.artmed.2012.03.003 PubMedCrossRefGoogle Scholar
  50. van Uden CJ, Besser MP (2004) Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite). BMC Musculoskelet Disord 5:13. doi: 10.1186/1471-2474-5-13 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wile DJ, Ranawaya R, Kiss ZH (2014) Smart watch accelerometry for analysis and diagnosis of tremor. J Neurosci Methods 230:1–4. doi: 10.1016/j.jneumeth.2014.04.021 PubMedCrossRefGoogle Scholar
  52. Yanagisawa N, Fujimoto S, Tamaru F (1989) Bradykinesia in Parkinson’s disease: disorders of onset and execution of fast movement. Eur Neurol 29(Suppl 1):19–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Christiana Ossig
    • 1
  • Angelo Antonini
    • 2
  • Carsten Buhmann
    • 3
  • Joseph Classen
    • 4
  • Ilona Csoti
    • 5
  • Björn Falkenburger
    • 6
  • Michael Schwarz
    • 7
  • Jürgen Winkler
    • 8
  • Alexander Storch
    • 9
    • 10
    • 11
    Email author
  1. 1.Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Division of Parkinson Disease and Movement DisordersFondazione Ospedale, San CamilloVeniceItaly
  3. 3.Department of NeurologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Department of NeurologyUniversity of LeipzigLeipzigGermany
  5. 5.Gertrudis-Kliniken im Parkinson Zentrum, Regionalzentrum BiskirchenLeun-BiskirchenGermany
  6. 6.Department of NeurologyRWTH University AachenAachenGermany
  7. 7.Neurologische KlinikKlinikum DortmundDortmundGermany
  8. 8.Division of Molecular NeurologyUniversity ErlangenErlangenGermany
  9. 9.Division of Neurodegenerative Diseases, Department of NeurologyTechnische Universität DresdenDresdenGermany
  10. 10.German Centre for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
  11. 11.Department of NeurologyUniversity of RostockRostockGermany

Personalised recommendations