Skip to main content

mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts

Abstract

Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Barbanti P et al (2000) Reduced density of dopamine D2-like receptors on peripheral blood lymphocytes in Alzheimer’s disease. Mech Ageing Dev 120:65–75

    CAS  Article  PubMed  Google Scholar 

  2. Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345

    CAS  Article  PubMed  Google Scholar 

  3. Boileau I et al (2012) Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. J Neurosci 32:1353–1359

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Boileau I et al (2013) The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction 108:953–963

    Article  PubMed  Google Scholar 

  5. Bondy B, Ackenheil M, Elbers R, Frohler M (1985) Binding of 3H-spiperone to human lymphocytes: a biological marker in schizophrenia? Psychiatry Res 15:41–48

    CAS  Article  PubMed  Google Scholar 

  6. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–639

    CAS  Article  PubMed  Google Scholar 

  7. Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia-therapeutic implications. Eur Arch Psychiatry Clin Neurosci 249(Suppl 4):37–43

    Article  PubMed  Google Scholar 

  8. Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse 37:125–145

    CAS  Article  PubMed  Google Scholar 

  9. Cole DM et al (2012) Orbitofrontal connectivity with resting-state networks is associated with midbrain dopamine D3 receptor availability. Cereb Cortex 22:2784–2793

    Article  PubMed  Google Scholar 

  10. Czermak C et al (2004a) Reduced dopamine D3 receptor expression in blood lymphocytes of smokers is negatively correlated with daily number of smoked cigarettes: a peripheral correlate of dopaminergic alterations in smokers. Nicotine Tob Res 6:49–54

    CAS  Article  PubMed  Google Scholar 

  11. Czermak C et al (2004b) Reduced dopamine D4 receptor mRNA expression in lymphocytes of long-term abstinent alcohol and heroin addicts. Addiction 99:251–257

    Article  PubMed  Google Scholar 

  12. Czlonkowska A, Jachowicz-Jeszka J, Czlonkowski A (1987) [3H]spiperone binding to lymphocyte in extrapyramidal disease and in aging. Brain Behav Immun 1:197–203

    CAS  Article  PubMed  Google Scholar 

  13. Czlonkowski A, Czlonkowska A (1984) Reduced binding of 3H-spiroperidol to lymphocyte in Wilson’s disease. Acta Neurol Scand 69:298–301

    CAS  Article  PubMed  Google Scholar 

  14. Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38:95–137

    Article  PubMed  Google Scholar 

  15. Di Chiara G, Tanda G, Cadoni C, Acquas E, Bassareo V, Carboni E (1998) Homologies and differences in the action of drugs of abuse and a conventional reinforcer (food) on dopamine transmission: an interpretative framework of the mechanism of drug dependence. Adv Pharmacol 42:983–987

    Article  PubMed  Google Scholar 

  16. Ding YC et al (2002) Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA 99:309–314

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Eisenegger C, Knoch D, Ebstein RP, Gianotti LR, Sandor PS, Fehr E (2010) Dopamine receptor D4 polymorphism predicts the effect of L-DOPA on gambling behavior. Biol Psychiatry 67:702–706

    CAS  Article  PubMed  Google Scholar 

  18. Elliot EE, Sibley DR, Katz JL (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 169:161–168

    CAS  Article  PubMed  Google Scholar 

  19. Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158:1052–1057

    CAS  Article  PubMed  Google Scholar 

  20. Ferrari M et al (2008) Dopaminergic receptor D5 mRNA expression is increased in circulating lymphocytes of Tourette syndrome patients. J Psychiatr Res 43:24–29

    Article  PubMed  Google Scholar 

  21. Filip M, Thomas ML, Cunningham KA (2000) Dopamine D5 receptors in nucleus accumbens contribute to the detection of cocaine in rats. J Neurosci 20:RC98-1–RC98-4

    Google Scholar 

  22. Garcia MG, Puig JG, Torres RJ (2009) Abnormal adenosine and dopamine receptor expression in lymphocytes of Lesch-Nyhan patients. Brain Behav Immun 23:1125–1131

    CAS  Article  PubMed  Google Scholar 

  23. Gardner EL, Ashby CR Jr (2000) Heterogeneity of the mesotelencephalic dopamine fibers: physiology and pharmacology. Neurosci Biobehav Rev 24:115–118

    CAS  Article  PubMed  Google Scholar 

  24. Goodarzi A, Vousooghi N, Sedaghati M, Mokri A, Zarrindast MR (2009) Dopamine receptors in human peripheral blood lymphocytes: changes in mRNA expression in opioid addiction. Eur J Pharmacol 615:218–222

    CAS  Article  PubMed  Google Scholar 

  25. Hansen A, Reiter K, Ziprian T, Jacobi A, Hoffmann A, Gosemann M, Scholze J, Lipsky PE, Dorner T (2005) Dysregulation of chemokine receptor expression and function by B cells of patients with primary Sjogren’s syndrome. Arthritis Rheum 52:2109–2119

    CAS  Article  PubMed  Google Scholar 

  26. Heidbreder C (2008) Selective antagonism at dopamine D3 receptors as a target for drug addiction pharmacotherapy: a review of preclinical evidence. CNS Neurol Disord Drug Targets 7:410–421

    CAS  Article  PubMed  Google Scholar 

  27. Holden C (2010) Psychiatry. Behavioral addictions debut in proposed DSM-V. Science 327:935

    CAS  Article  PubMed  Google Scholar 

  28. Ilani T, Ben-Shachar D, Strous RD, Mazor M, Sheinkman A, Kotler M, Fuchs S (2001) A peripheral marker for schizophrenia: increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci USA 98:625–628

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100:689–699

    CAS  Article  PubMed  Google Scholar 

  30. Kim SH, Baik SH, Park CS, Kim SJ, Choi SW, Kim SE (2011) Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport 22:407–411

    CAS  Article  PubMed  Google Scholar 

  31. Kirillova GP, Hrutkay RJ, Shurin MR, Shurin GV, Tourkova IL, Vanyukov MM (2008) Dopamine receptors in human lymphocytes: radioligand binding and quantitative RT-PCR assays. J Neurosci Methods 174:272–280

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259

    CAS  Article  PubMed  Google Scholar 

  33. Kwak YT, Koo MS, Choi CH, Sunwoo I (2001) Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet 2:3

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Le Foll B, Diaz J, Sokoloff P (2003) Increased dopamine D3 receptor expression accompanying behavioral sensitization to nicotine in rats. Synapse 47:176–183

    Article  PubMed  Google Scholar 

  35. Le Fur G, Meininger V, Phan T, Gerard A, Baulac M, Uzan A (1980) Decrease in lymphocyte [3H]spiroperidol binding sites in Parkinsonism. Life Sci 27:1587–1591

    Article  PubMed  Google Scholar 

  36. Li T et al (1997) Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Mol Psychiatry 2:413–416

    CAS  Article  PubMed  Google Scholar 

  37. Li Y et al (2006) The effect of dopamine D2, D5 receptor and transporter (SLC6A3) polymorphisms on the cue-elicited heroin craving in Chinese. Am J Med Genet B Neuropsychiatr Genet 141B:269–273

    CAS  Article  PubMed  Google Scholar 

  38. Mash DC, Staley JK (1999) D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann N Y Acad Sci 877:507–522

    CAS  Article  PubMed  Google Scholar 

  39. Mehler-Wex C, Duvigneau JC, Hartl RT, Ben-Shachar D, Warnke A, Gerlach M (2006) Increased mRNA levels of the mitochondrial complex I 75-kDa subunit. A potential peripheral marker of early onset schizophrenia? Eur Child Adolesc Psychiatry 15:504–507

    Article  PubMed  Google Scholar 

  40. Nagai Y, Ueno S, Saeki Y, Soga F, Hirano M, Yanagihara T (1996) Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology 46:791–795

    CAS  Article  PubMed  Google Scholar 

  41. Perez de Castro I, Ibanez A, Torres P, Saiz-Ruiz J, Fernandez-Piqueras J (1997) Genetic association study between pathological gambling and a functional DNA polymorphism at the D4 receptor gene. Pharmacogenetics 7:345–348

    CAS  PubMed  Google Scholar 

  42. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    PubMed Central  Article  PubMed  Google Scholar 

  43. Potenza MN (2006) Should addictive disorders include non-substance-related conditions? Addiction 101(Suppl 1):142–151

    Article  PubMed  Google Scholar 

  44. Potenza MN (2008) Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc Lond B Biol Sci 363:3181–3189

    PubMed Central  Article  PubMed  Google Scholar 

  45. Potenza MN, Fiellin DA, Heninger GR, Rounsaville BJ, Mazure CM (2002) Gambling: an addictive behavior with health and primary care implications. J Gen Intern Med 17:721–732

    PubMed Central  Article  PubMed  Google Scholar 

  46. Primus RJ et al (1997) II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94-1. J Pharmacol Exp Ther 282:1020–1027

    CAS  PubMed  Google Scholar 

  47. Rao PA, Pickar D, Gejman PV, Ram A, Gershon ES, Gelernter J (1994) Allelic variation in the D4 dopamine receptor (DRD4) gene does not predict response to clozapine. Arch Gen Psychiatry 51:912–917

    CAS  Article  PubMed  Google Scholar 

  48. Ricci A, Amenta F (1994) Dopamine D5 receptors in human peripheral blood lymphocytes: a radioligand binding study. J Neuroimmunol 53:1–7

    CAS  Article  PubMed  Google Scholar 

  49. Ricci A, Veglio F, Amenta F (1995) Radioligand binding characterization of putative dopamine D3 receptor in human peripheral blood lymphocytes with [3H]7-OH-DPAT. J Neuroimmunol 58:139–144

    CAS  Article  PubMed  Google Scholar 

  50. Ricci A, Bronzetti E, Felici L, Tayebati SK, Amenta F (1997) Dopamine D4 receptor in human peripheral blood lymphocytes: a radioligand binding assay study. Neurosci Lett 229:130–134

    CAS  Article  PubMed  Google Scholar 

  51. Rivera A, Cuellar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229

    CAS  Article  PubMed  Google Scholar 

  52. Rocc P et al (2002) Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 26:1155–1160

    Article  PubMed  Google Scholar 

  53. Santambrogio L, Lipartiti M, Bruni A, Dal Toso R (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45:113–119

    CAS  Article  PubMed  Google Scholar 

  54. Self DW, Barnhart WJ, Lehman DA, Nestler EJ (1996) Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 271:1586–1589

    CAS  Article  PubMed  Google Scholar 

  55. Shields PG, Lerman C, Audrain J, Bowman ED, Main D, Boyd NR, Caporaso NE (1998) Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev 7:453–458

    CAS  PubMed  Google Scholar 

  56. Sibley DR, Monsma FJ Jr, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35:391–415

    CAS  Article  PubMed  Google Scholar 

  57. Simpson J, Vetuz G, Wilson M, Brookes KJ, Kent L (2010) The DRD4 receptor Exon 3 VNTR and 5′ SNP variants and mRNA expression in human post-mortem brain tissue. Am J Med Genet B Neuropsychiatr Genet 153B:1228–1233

    CAS  PubMed  Google Scholar 

  58. Sobik L, Hutchison K, Craighead L (2005) Cue-elicited craving for food: a fresh approach to the study of binge eating. Appetite 44:253–261

    Article  PubMed  Google Scholar 

  59. Staley JK, Mash DC (1996) Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci 16:6100–6106

    CAS  PubMed  Google Scholar 

  60. Straub RE, Sullivan PF, Ma Y, Myakishev MV, Harris-Kerr C, Wormley B, Kadambi B, Sadek H, Silverman MA, Webb BT et al (1999) Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Mol Psychiatry 4:129–144

    CAS  Article  PubMed  Google Scholar 

  61. Sullivan PF, Neale MC, Silverman MA, Harris-Kerr C, Myakishev MV, Wormley B, Webb BT, Ma Y, Kendler KS, Straub RE (2001) An association study of DRD5 with smoking initiation and progression to nicotine dependence. Am J Med Genet 105:259–265

    CAS  Article  PubMed  Google Scholar 

  62. Sunahara RK et al (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    CAS  Article  PubMed  Google Scholar 

  63. Suzuki T, Kobayashi K, Nagatsu T (1995) Genomic structure and tissue distribution of the mouse dopamine D4 receptor. Neurosci Lett 199:69–72

    CAS  Article  PubMed  Google Scholar 

  64. Swant J, Chirwa S, Stanwood G, Khoshbouei H (2010) Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One 5:e11382

    PubMed Central  Article  PubMed  Google Scholar 

  65. Vanyukov MM, Moss HB, Gioio AE, Hughes HB, Kaplan BB, Tarter RE (1998) An association between a microsatellite polymorphism at the DRD5 gene and the liability to substance abuse: pilot study. Behav Genet 28:75–82

    CAS  Article  PubMed  Google Scholar 

  66. Vogel M, Pfeifer S, Schaub RT, Grabe HJ, Barnow S, Freyberger HJ, Cascorbi I (2004) Decreased levels of dopamine D3 receptor mRNA in schizophrenic and bipolar patients. Neuropsychobiology 50:305–310

    CAS  Article  PubMed  Google Scholar 

  67. Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm Gen Sect 94:11–19

    CAS  Article  PubMed  Google Scholar 

  68. Weinstein AM (2010) Computer and video game addiction-a comparison between game users and non-game users. Am J Drug Alcohol Abuse 36:268–276

    Article  PubMed  Google Scholar 

  69. Widyanto L, McMurran M (2004) The psychometric properties of the internet addiction test. Cyberpsychol Behav 7:443–450

    Article  PubMed  Google Scholar 

  70. Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    CAS  Article  PubMed  Google Scholar 

  71. Young KS (1996) Psychology of computer use: XL. Addictive use of the Internet: a case that breaks the stereotype. Psychol Rep 79:899–902

    CAS  Article  PubMed  Google Scholar 

  72. Zvara A, Szekeres G, Janka Z, Kelemen JZ, Cimmer C, Santha M, Puskas LG (2005) Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers. Dis Markers 21:61–69

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the grant support of the Tehran University of Medical Sciences (91-03-49-19464).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nasim Vousooghi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vousooghi, N., Zarei, S.Z., Sadat-Shirazi, MS. et al. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts. J Neural Transm 122, 1391–1398 (2015). https://doi.org/10.1007/s00702-015-1408-2

Download citation

Keywords

  • Computer game addiction
  • Lymphocyte
  • Dopamine receptor
  • mRNA expression