Skip to main content

Advertisement

Log in

Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cognitive decline is a cardinal feature of Alzheimer’s disease (AD) predominantly linked to synaptic failure, disrupted network connectivity and neurodegeneration. A large body of evidence associates the Wnt pathway with synaptic modulation and cognitive processes, suggesting a potential role for aberrant Wnt signaling in cognitive impairment. In fact, altered expression of key Wnt pathway components has been found in brains of AD patients as well as AD animal models supporting a deregulated pathway in AD. The evidence for deregulated Wnt signaling in AD, however, remains sparse and focused on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions with the hippocampus exhibiting most pronounced changes. Furthermore, the Wnt pathway constituents Wnt7b and Tcf7l1/Tcf3 showed overlapping gene expression alterations across both medial temporal lobe structures, while β-catenin was inversely expressed between brain regions. We also identified total protein alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase-targeted hyperphosphorylation at specific tau epitope in soluble pretangles and prominent tau aggregation exclusively in insoluble neurofibrillary tangles of AD subjects. The Wnt pathway-focused approach confirms altered Wnt signaling in the neurodegenerative AD brain and highlights the potential role of the pathway as a therapeutic target for the treatment of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad-Annuar A et al (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139. doi:10.1083/jcb.200511054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alarcon MA et al (2013) A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer’s disease. Neurobiol Aging 34(1709):e1709–e1718. doi:10.1016/j.neurobiolaging.2012.11.004

    Google Scholar 

  • Allen G et al (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487. doi:10.1001/archneur.64.10.1482

    Article  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Hansen L, Masliah E, Saitoh T (1996) Glycogen synthase kinase 3 alteration in Alzheimer disease is related to neurofibrillary tangle formation Molecular and chemical neuropathology/sponsored by the International Society for Neurochemistry and the World Federation of Neurology and research groups on neurochemistry and cerebrospinal fluid 29:253–261 doi:10.1007/BF02815006

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178. doi:10.1073/pnas.0308512100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Euro Neurol 33:403–408

    Article  CAS  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders Brain research. Brain Res Rev 33:95–130

    Article  CAS  PubMed  Google Scholar 

  • Caricasole A et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci Off J Soc Neurosci 24:6021–6027. doi:10.1523/JNEUROSCI.1381-04.2004

    Article  CAS  Google Scholar 

  • Cerpa W, Farias GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Molecular Neurodegener 5:3. doi:10.1186/1750-1326-5-3

    Article  Google Scholar 

  • Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci Off J Soc Neurosci 31:9466–9471. doi:10.1523/JNEUROSCI.6311-10.2011

    Article  CAS  Google Scholar 

  • Chen J, Park CS, Tang SJ (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916. doi:10.1074/jbc.M511920200

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature Rev Neurosci 6:351–362. doi:10.1038/nrn1665

    Article  CAS  Google Scholar 

  • Davis EK, Zou Y, Ghosh A (2008) Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Development 3:32. doi:10.1186/1749-8104-3-32

    Article  PubMed Central  PubMed  Google Scholar 

  • De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12

    Article  PubMed  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464. doi:10.1002/ana.410270502

    Article  CAS  PubMed  Google Scholar 

  • Dickins EM, Salinas PC (2013) Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 7:162. doi:10.3389/fncel.2013.00162

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrer I, Barrachina M, Puig B (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease. Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 104:583–591. doi:10.1007/s00401-002-0587-8

    CAS  PubMed  Google Scholar 

  • Fortress AM, Schram SL, Tuscher JJ, Frick KM (2013) Canonical Wnt signaling is necessary for object recognition memory consolidation. J Neurosci Off J Soc Neurosci 33:12619–12626. doi:10.1523/JNEUROSCI.0659-13.2013

    Article  CAS  Google Scholar 

  • Ghanevati M, Miller CA (2005) Phospho-beta-catenin accumulation in Alzheimer’s disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosc MN 25:79–94. doi:10.1385/JMN:25:1:079

    Article  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  • Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–525. doi:10.1016/j.neuron.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  • Gomez Ravetti M, Rosso OA, Berretta R, Moscato P (2010) Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease PloS one 5:e10153. doi:10.1371/journal.pone.0010153

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642. doi:10.1073/pnas.0308627101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439. doi:10.1111/j.1471-4159.2007.05194.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem 121:179–188

    CAS  PubMed  Google Scholar 

  • Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Molecul Cell Biol 6:64–74. doi:10.1093/jmcb/mjt051

    Article  Google Scholar 

  • Koppelkamm A, Vennemann B, Lutz-Bonengel S, Fracasso T, Vennemann M (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 125:573–580. doi:10.1007/s00414-011-0578-1

    Article  PubMed  Google Scholar 

  • Kwok JB et al (2008) Glycogen synthase kinase-3beta and tau genes interact in Alzheimer’s disease. Ann Neurol 64:446–454. doi:10.1002/ana.21476

    Article  CAS  PubMed  Google Scholar 

  • Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55. doi:10.1111/j.1365-2990.2006.00795.x

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein E, Jessberger S, Lansford H, Deaire AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nat Lett 437:1370–1375. doi:10.1038/nature04108

    Article  CAS  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27–39. doi:10.1093/emboj/20.1.27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maguschak KA, Ressler KJ (2008) Beta-catenin is required for memory consolidation. Nat Neurosci 11:1319–1326. doi:10.1038/nn.2198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 174:67–72

    Article  CAS  PubMed  Google Scholar 

  • Mateo I, Infante J, Llorca J, Rodriguez E, Berciano J, Combarros O (2006) Association between glycogen synthase kinase-3beta genetic polymorphism and late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 21:228–232. doi:10.1159/000091044

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  • Murase S, Mosser E, Schuman EM (2002) Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105

    Article  CAS  PubMed  Google Scholar 

  • Newmark RE, Schon K, Ross RS, Stern CE (2013) Contributions of the hippocampal subfields and entorhinal cortex to disambiguation during working memory. Hippocampus 23:467–475. doi:10.1002/hipo.22106

    Article  PubMed Central  PubMed  Google Scholar 

  • Okawa Y, Ishiguro K, Fujita SC (2003) Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett 535:183–189

    Article  CAS  PubMed  Google Scholar 

  • Oliva CA, Vargas JY, Inestrosa NC (2013) Wnt signaling: role in LTP, neural networks and memory. Ageing Res Rev 12:786–800. doi:10.1016/j.arr.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  CAS  PubMed  Google Scholar 

  • Penna I, Vella S, Gigoni A, Russo C, Cancedda R, Pagano A (2011) Selection of candidate housekeeping genes for normalization in human postmortem brain samples. Int J Mol Sci 12:5461–5470. doi:10.3390/ijms12095461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: best keeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Rizzu P et al (2000) Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum Mol Genet 9:3075–3082

    Article  CAS  PubMed  Google Scholar 

  • Sahara N et al (2013) Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. J Alzheimer’s Dis JAD 33:249–263. doi:10.3233/JAD-2012-121093

    CAS  Google Scholar 

  • Salcedo-Tello P, Ortiz-Matamoros A, Arias C (2011) GSK3 Function in the Brain during Development. Neuronal Plasticity Neurodegener Int J Alzheimer’s Dis 2011:189728. doi:10.4061/2011/189728

    Google Scholar 

  • Schaffer BA et al (2008) Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 65:1368–1374. doi:10.1001/archneur.65.10.1368

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384. doi:10.1016/j.neurobiolaging.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  • Seib DR et al (2013) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12:204–214. doi:10.1016/j.stem.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a004457

    PubMed Central  PubMed  Google Scholar 

  • Shruster A, Eldar-Finkelman H, Melamed E, Offen D (2011) Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid beta-peptide. J Neurochem 116:522–529. doi:10.1111/j.1471-4159.2010.07131.x

    Article  CAS  PubMed  Google Scholar 

  • Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. doi:10.1186/1471-2199-7-33

    Article  PubMed Central  PubMed  Google Scholar 

  • Sperber BR, Leight S, Goedert M, Lee VM (1995) Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci Lett 197:149–153

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S (2004) Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Euro J Neurosci 19:2711–2719. doi:10.1111/j.0953-816X.2004.03365.x

    Article  Google Scholar 

  • Tabatadze N, Tomas C, McGonigal R, Lin B, Schook A, Routtenberg A (2012) Wnt transmembrane signaling and long-term spatial memory. Hippocampus 22:1228–1241. doi:10.1002/hipo.20991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taniguchi S et al (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489:46–50

    Article  CAS  PubMed  Google Scholar 

  • van Eersel J et al (2009) Phosphorylation of soluble tau differs in Pick’s disease and Alzheimer’s disease brains. J Neural Trans 116:1243–1251. doi:10.1007/s00702-009-0293-y

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Genome biology 3:RESEARCH0034

  • Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci USA 107:21164–21169. doi:10.1073/pnas.1010011107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varela-Nallar L, Parodi J, Farias GG, Inestrosa NC (2012) Wnt-5a is a synaptogenic factor with neuroprotective properties against Abeta toxicity. Neuro-Degener Dis 10:23–26. doi:10.1159/000333360

    Article  CAS  Google Scholar 

  • Weis S, Llenos IC, Dulay JR, Elashoff M, Martinez-Murillo F, Miller CL (2007) Quality control for microarray analysis of human brain samples: the impact of postmortem factors. RNA characteristics, and histopathology. J Neurosci Methods 165:198–209. doi:10.1016/j.jneumeth.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Wiedau-Pazos M, Wong E, Solomon E, Alarcon M, Geschwind DH (2009) Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol Aging 30:14–21. doi:10.1016/j.neurobiolaging.2007.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Z, Agarwal-Mawal A, Paudel HK (2004) 14-3-3 binds to and mediates phosphorylation of microtubule-associated tau protein by Ser9-phosphorylated glycogen synthase kinase 3beta in the brain. J Biol Chem 279:26105–26114. doi:10.1074/jbc.M308298200

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395:698–702. doi:10.1038/27208

    Article  CAS  PubMed  Google Scholar 

  • Zhukareva V et al (2003) Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol 105:469–476. doi:10.1007/s00401-002-0668-8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kate Pedersen and Anette Bredal Christiansen for technical expertise and the Netherland Brain Bank for the kind tissue donation. Financial support was granted by the Copenhagen Graduate School of Health Science, University of Copenhagen.

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Riise.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riise, J., Plath, N., Pakkenberg, B. et al. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer’s disease. J Neural Transm 122, 1303–1318 (2015). https://doi.org/10.1007/s00702-015-1375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1375-7

Keywords

Navigation