Journal of Neural Transmission

, Volume 122, Issue 9, pp 1289–1301 | Cite as

Genomic structural variants are linked with intellectual disability

  • Kazima Bulayeva
  • Klaus-Peter Lesch
  • Oleg Bulayev
  • Christopher Walsh
  • Stephen Glatt
  • Farida Gurgenova
  • Jamilja Omarova
  • Irina Berdichevets
  • Paul M. Thompson
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Mutations in more than 500 genes have been associated with intellectual disability (ID) and related disorders of cognitive function, such as autism and schizophrenia. Here we aimed to unravel the molecular epidemiology of non-specific ID in a genetic isolate using a combination of population and molecular genetic approaches. A large multigenerational pedigree was ascertained within a Dagestan Genetic Heritage research program in a genetic isolate of indigenous ethnics. Clinical characteristics of the affected members were based on combining diagnoses from regional psychiatric hospitals with our own clinical assessment, using a Russian translation of the structured psychiatric interviews, the Diagnostic Interview for Genetic Studies and the Family Interview for Genetic Studies, based on DSM-IV criteria. Weber/CHLC 9.0 STRs set was used for multipoint parametric linkage analyses (Simwalk2.91). Next, we checked CNVs and LOH (based on Affymetrix SNP 5.0 data) in the linked with ID genomic regions with the aim to identify candidate genes associated with mutations in linked regions. The number of statistically significant (p ≤ 0.05) suggestive linkage peaks with 1.3 < LOD < 3.0 we detected in a total of 10 genomic regions: 1q41, 2p25.3-p24.2, 3p13-p12.1, 4q13.3, 10p11, 11q23, 12q24.22-q24.31, 17q24.2-q25.1, 21q22.13 and 22q12.3-q13.1. Three significant linkage signals with LOD >3 were obtained at 2p25.3-p24.2 under the dominant model, with a peak at 21 cM flanked by loci D2S2976 and D2S2952; at 12q24.22-q24.31 under the recessive model, with a peak at −120 cM flanked by marker D12S2070 and D12S395 and at 22q12.3 under the dominant model, with a peak at 32 cM flanked by marker D22S683 and D22S445. After a set of genes had been designated as possible candidates in these specific chromosomal regions,we conducted an exploratory search for LOH and CNV based on microarray data to detect structural genomic variants within five ID-linked regions with LOD scores between 2.0 and 3.9. In these selected regions we obtained 173 ROH segments and 98 CN segments. Further analysis of region 2p25.3-p24.2 revealed deletions within genes encoding MYTL, SNTG2 and TPO among five of 21 affected cases at 2p25.3-p24.2. In the ID-linked region at 12q24.22-12q24.31 19 out of 21 ID cases carried segmental CNV and 20 of 21 them displayed ROH segments with mean size lengths for ID cases 2512 kb (500–6,472 kb) and for healthy control 682 kb (531–986 kb), including the genes MED13L, HRK, FBXW8, TESC, CDK2AP1 and SBNO1. Seven of 21 affected pedigree members displayed segmental deletions at 22q12.3 that includes the gene LARGE. Eight affected pedigree members carried ROH segments and 6 CN segments at 10p11.23-p11.21 containing the genes ZEB1, c10orf68 and EPC1. Our linkage and structural genomic variation analyses in a remote highland genetic isolate with aggregation of ID demonstrated that even highly isolated single kindred ID has oligo/polygenic pathogenesis. The results obtained implicate 10 genomic regions linked with ID that contain some of previously reported candidate genes, including HRK, FBXW8, TESC, CDK2AP1 and SBNO1 at 12q24 that were shown in recent studies as associated with brain measures derived from MRI scans.

Keywords

Intellectual disability Genetic isolate Genome-wide linkage scan STRs SNPs CNV ROH 

References

  1. Alkuraya FS (2013) Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience. Clin Genet 84:203–208CrossRefPubMedGoogle Scholar
  2. Altshuler LL, Bartzokis G, Grieder T, Curran J, Mintz J (1998) Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiatry 55:663–664PubMedGoogle Scholar
  3. Bis JC, DeCarli C, Smith AV, van der Lijn V, Crivello F, Fornage M et al (2012) Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet 44:545–551PubMedCentralCrossRefPubMedGoogle Scholar
  4. Brouwer RM, Mandl RC, Schnack HG, van Soelen IL, van Baal GC, Peper JS et al (2012) White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study. PLoS One 7:e32316PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bulayeva KB, Leal S, Pavlova TA, Kurbanov RM, Coover S, Bulayev OA, Byerley W (2000) The ascertainment of schizophrenia pedigrees in Dagestan genetic isolates. Psychiatr Genet 10(2):67–72CrossRefPubMedGoogle Scholar
  6. Bulayeva KB, Pavlova TA, Kurbanov RM, Bulayev OA (2002) Mapping genes of complex diseases in genetic isolates of Dagestan. Genetika 38(11):1539–1548Google Scholar
  7. Bulayeva KB, Pavlova TA, Kurbanov RM, Leal S, Bulayev OA (2003) Genetic and epidemiological studies in Daghestan highland isolates. Genetika 39(12):333–341Google Scholar
  8. Bulayeva KB, Leal SM, Pavlova TA, Kurbanov RM, Glatt SJ, Bulayev OA et al (2005) Mapping genes of complex psychiatric diseases in Daghestan genetic isolates. Am J Med Genet B Neuropsychiatr Genet 132B(1):76–84CrossRefPubMedGoogle Scholar
  9. Bulayeva KB, Glatt SJ, Bulayev OA, Pavlova TA, Tsuang MT (2007) Genome-wide linkage scan of schizophrenia: a cross-isolate study. Genomics 89:167–177CrossRefPubMedGoogle Scholar
  10. Bulayeva KB, Lencz T, Glatt S, Takumi T, Gurgenova FR, Bulayev OA (2011) Genome-wide linkage scan of major depressive disorder in two Dagestan genetic isolates. Cent Eur J Med 6:616–624Google Scholar
  11. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641CrossRefPubMedGoogle Scholar
  12. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641PubMedGoogle Scholar
  13. Freitag CM, Luders E, Hulst HE, Narr KL, Thompson PM, Toga AW, Krick C, Konrad C (2009) Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biol Psychiatry 66:316–319PubMedCentralCrossRefPubMedGoogle Scholar
  14. Goldberg TE, Torrey EF, Berman KF, Weinberger DR (1994) Relations between neuropsychological performance and brain morphological and physiological measures in monozygotic twins discordant for schizophrenia. Psychiatry Res 55:51–61CrossRefPubMedGoogle Scholar
  15. Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P et al (1998) Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 155:1384–1391CrossRefPubMedGoogle Scholar
  16. Ikram MA, Fornage M, Smith AV, Seshadri S, Schmidt R et al (2012) Common variants at 6q22 and 17q21 are associated with intracranial volume. Nat Genet 44:539–544PubMedCentralCrossRefPubMedGoogle Scholar
  17. Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, Hampel H, Hill DL, Johnson K, Mangin JF, Scheltens P, Schwarz AJ, Sperling R, Suhy J, Thompson PM, Weiner M, Foster NL (2011) Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement 7(4):474–485.e4PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kaufman L, Ayub M, Vincent JB (2010) The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2(4):182–209PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kremen WS, Jacobson KC (2010) Introduction to the special issue, pathways between genes, brain, and behavior. Behav Genet 40:111–113PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lee Y, Mattai A, Long R, Rapoport JL, Gogtay N, Addington AM (2012) Microduplications disrupting the MYT1L gene (2p25.3) are associated with schizophrenia. Psychiatr Genet 22:206–209PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM et al (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. PNAS 104:19942–19947PubMedCentralCrossRefPubMedGoogle Scholar
  22. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Röser C, Nguyen TT, Craig DW, Romanos J, Heine M, Meyer J, Freitag C, Warnke A, Romanos M, Schäfer H, Walitza S, Reif A, Stephan DA, Jacob C (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115:1573–1585CrossRefPubMedGoogle Scholar
  23. Levay K, Slepak VZ (2007) Tescalcin is an essential factor in megakaryocytic differentiation associated with Ets family gene expression. J Clin Invest 117:2672–2683PubMedCentralCrossRefPubMedGoogle Scholar
  24. Levay K, Slepak VZ (2010) Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage. Exp Cell Res 316:1254–1262PubMedCentralCrossRefPubMedGoogle Scholar
  25. Li W, Wang X, Zhao J, Lin J, Song XQ, Yang Y et al (2012) Association study of myelin transcription factor 1-like polymorphisms with schizophrenia in Han Chinese population. Genes Brain Behav 11:87–93CrossRefPubMedGoogle Scholar
  26. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Fritht CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97:4398–4403PubMedCentralCrossRefPubMedGoogle Scholar
  27. Mayberg HS (1993) Neuroimaging studies of depression in neurologic disease. In: Starkstein SE, Robinson RG (eds) Depression in neurological disease. Johns Hopkins University Press, Baltimore, pp 186–216Google Scholar
  28. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 7367:57–63CrossRefGoogle Scholar
  29. Nestor PG, Shenton ME, McCarley RW, Haimson J, Smith RS, O’Donnell B et al (1993) Neuropsychological correlates of MRI temporal lobe abnormalities in schizophrenia. Am J Psychiatry 150:1849–1855CrossRefPubMedGoogle Scholar
  30. Nurnberger J, Blehar M, Kaufman C, York-Cooler C, Simpson S, Harkavy-Friedman J et al (1994) Diagnostic interview for genetic studies: rationale, unique features and training. Arch Gen Psychiatry 51:849–862CrossRefPubMedGoogle Scholar
  31. Pahari DR, Gu YJ, van Oeveren W, El-Essawi A, Harringer W, Brouwer RM (2013) Effect of minimized perfusion circuit on brain injury markers carnosinase and brain-type fatty binding protein in coronary artery bypass grafting patients. Artif Org 37:128–135CrossRefGoogle Scholar
  32. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Pol H, Hilleke E (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28:464–473CrossRefPubMedGoogle Scholar
  33. Roeleveld N, Zielhuis GA, Gabreëls F (1997) The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 39(2):125–132CrossRefPubMedGoogle Scholar
  34. Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494CrossRefPubMedGoogle Scholar
  35. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461PubMedCentralCrossRefPubMedGoogle Scholar
  36. Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics. Am J Hum Genet 58:1323–1337PubMedCentralPubMedGoogle Scholar
  37. Stein JL, Hibar DP, Madsen SK et al (2011) Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N = 1198) using genome-wide search. Mol Psychiatry 16:927–937. doi:10.1038/mp.2011 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM et al (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44:552–561PubMedCentralCrossRefPubMedGoogle Scholar
  39. Stevens SJ, van Ravenswaaij-Arts CM, Janssen JW, Klein Wassink-Ruiter JS, van Essen AJ, Dijkhuizen T et al (2011) MYT1L is a candidate gene for intellectual disability in patients with 2p25.3 (2pter) deletions. Am J Med Genet A 155A:2739–2745CrossRefPubMedGoogle Scholar
  40. Taal HR, St Pourcain B, Thiering E, Das S, Mook-Kanamori DO, Warrington NM et al (2012) Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet 44:532–538PubMedCentralCrossRefPubMedGoogle Scholar
  41. Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y (2011) Function of strawberry notch family genes in the zebrafish brain development. Kobe J Med Sci 56:E220–E230PubMedGoogle Scholar
  42. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R et al (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8(1):153–182PubMedCentralPubMedGoogle Scholar
  43. Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M et al (1999) Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 56:133–141CrossRefPubMedGoogle Scholar
  44. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966CrossRefPubMedGoogle Scholar
  45. Weber JL, Wang Z, Hansen K, Stephenson M, Kappel C, Salzman Sh, Wilkie PJ, Keats B, Dracopoli NC, Brandriff BF, Olsenet AS (1993) Evidence for human meiotic recombination: interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19. Am J Hum Genet 53:1079–1095PubMedCentralPubMedGoogle Scholar
  46. Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402CrossRefPubMedGoogle Scholar
  47. Yeargin-Allsopp M, Murphy CC, Cordero JF, Decouflé P, Hollowell JG (1997) Reported biomedical causes and associated medical conditions for mental retardation among 10-year-old children, metropolitan Atlanta, 1985 to 1987. Dev Med Child Neurol 39(3):142–149CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Kazima Bulayeva
    • 1
  • Klaus-Peter Lesch
    • 2
  • Oleg Bulayev
    • 1
  • Christopher Walsh
    • 3
    • 4
  • Stephen Glatt
    • 3
    • 4
  • Farida Gurgenova
    • 1
  • Jamilja Omarova
    • 1
  • Irina Berdichevets
    • 1
  • Paul M. Thompson
    • 5
    • 6
  1. 1.N.I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of WuerzburgWürzburgGermany
  3. 3.Department of PathologyChildren’s Hospital BostonBostonUSA
  4. 4.Department of Psychiatry and Behavioral Sciences, and Medical Genetics Research CenterSUNY Upstate Medical UniversitySyracuseUSA
  5. 5.Imaging Genetics CenterUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Departments of Neurology, Psychiatry, Radiology, Pediatrics, Engineering, and OphthalmologyKeck/USC School of MedicineLos AngelesUSA

Personalised recommendations