Skip to main content
Log in

Possible association between DBH 19 bp insertion/deletion polymorphism and clinical symptoms in schizophrenia with tardive dyskinesia

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Overactivity of dopaminergic neurotransmission is a putative mechanism of tardive dyskinesia (TD). Previous studies have found dysfunction in plasma dopamine beta-hydoxylase (DBH) in schizophrenia with TD. Moreover, DBH, whose activity and levels are strongly controlled by the DBH gene, is a key enzyme in the conversion of dopamine (DA) to norepinephrine (NE) associated with excited behavior. This study examined whether the DBH5′-insertion/deletion (Ins/Del) polymorphism was associated with excited behavior in schizophrenia with TD. The presence of the DBH5′-Ins/Del polymorphism was determined in 741 schizophrenia with TD (n = 345) and without TD (n = 396). The Abnormal Involuntary Movement Scale and Positive and Negative Syndrome Scale were used to assess the severity of TD and psychopathology of schizophrenia. There was no significant difference in the allelic and genotypic frequencies of the DBH5′-Ins/Del polymorphism between schizophrenia with and without TD (both p > 0.05). However, the excited symptoms score was significantly different to the DBH5′-Ins/Del genotypic groups in schizophrenia with TD (p < 0.05) but not in the two groups of non-TD and total patients (both p > 0.05). The excited symptoms score was higher in TD patients with the Del/Del genotype than those with Ins alleles (p = 0.015). Our findings suggest that the DBH5′-Ins/Del polymorphism may not contribute directly to the development of TD in schizophrenia, but it may be involved in the excited behavior of TD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberg K, Adkins DE, Bukszár J, Webb BT, Caroff SN, Miller DD, Sebat J, Stroup S, Fanous AH, Vladimirov VI, McClay JL, Lieberman JA, Sullivan PF, van den Oord EJ (2010) Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 67(3):279–282

    Article  PubMed Central  PubMed  Google Scholar 

  • Adamczyk A, Mejias R, Takamiya K, Yocum J, Krasnova IN, Calderon J, Cadet JL, Huganir RL, Pletnikov MV, Wang T (2012) GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav Brain Res 229(1):265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakker PR, van Harten PN, van Os J (2008) Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 13(5):544–556

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA, Smith KM, Fischer M, Navia B (2006) An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphism (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. Am J Med Genet B Neuropsychiatr Genet 141B(5):487–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casey DE (2000) Tardive dyskinesia: pathophysiology and animal models. J Clin Psychiatry 61(Suppl 4):5–9

    CAS  PubMed  Google Scholar 

  • Correll CU, Malhotra AK (2004) Pharmacogenetics of antipsychotic-induced weigh gain. Psychopharmacology 174(4):477–489

    Article  CAS  PubMed  Google Scholar 

  • Correll CU, Schenk EM (2008) Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry 21(2):151–156

    Article  PubMed  Google Scholar 

  • Craig IW, Halton KE (2009) Genetics of human aggressive behaviour. Hum Genet 126(1):101–113

    Article  PubMed  Google Scholar 

  • Cubells JF, Zabetian CP (2004) Human genetics of plasma dopamine beta-hydroxylase activity: application to research in psychiatry and neurology. Psychopharmacology 174(4):463–476

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, van Kammen DP, Kelley ME, Anderson GM, O’Connor DT, Price LH, Malison, Rao PA, Kobayshi K, Nagatsu T, Gelernter J (1998) Dopamine beta-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Hum Genet 102(5):533–535

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, Kranzler HR, McCance-Katz E, Anderson GM, Malison RT, Price LH, Gelemter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine beta-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, Sun X, Li W, Bonsall RW, McGrath JA, Avramopoulos D, Lasseter VK, Wolyniec PC, Tang YL, Mercer K, Pulver AE, Elston RC (2011) Linkage analysis of plasma dopamine beta-hydroxylase activity in families of patients with schizophrenia. Hum Genet 130(5):635–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66(2):87–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Engelborghs S, Vloeberghs E, Le Bastard N, Van Buggenhout M, Mariën P, Somers N, Nagels G, Pickut BA, De Deyn PP (2008) The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochem Int 52(6):1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Gauderman WJ (2002) Sample size requirements for matched case–control studies of gene–environment interaction. Stat Med 21(1):35–50

    Article  PubMed  Google Scholar 

  • Gong P, Zheng A, Zhang K, Lei X, Li F, Chen D, Chi W, Tong X, Zheng Z, Gao X, Zhang F (2010) Association analysis between 12 genetic variants of ten genes and personality traits in a young Chinese Han population. J Mol Neurosci 42(1):120–126

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B (2010) Evidence for association of the GLI2 gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 25(16):2809–2817

    Article  PubMed  Google Scholar 

  • Guy W (1976) ECDEU assessment manual for psychopharmacology. US Department of Health, Education and Welfare Publication-ADM, Rockville

    Google Scholar 

  • Hess C, Reif A, Strobel A, Boreatti-Hümmer A, Heine M, Lesch KP, Jacob CP (2009) A functional dopamine-beta-hydroxylase gene promoter polymorphism is associated with impulsive personality styles, but not with affective disorders. J Neural Transm 116(2):121–130

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Zhang X, Huang XF, Han M, Fernandez F, Yu Y, Sun S, Li W, Chen DC, Xiu MH, Kosten TR, Zhang XY (2012) The dopamine b-hydroxylase 19 bp insertion/deletion polymorphism was associated with first-episode but not medicated chronic schizophrenia. J Psychiatr Res 46(6):733–737

    Article  PubMed  Google Scholar 

  • Hui L, Zhang X, Yu YQ, Han M, Huang XF, Chen DC, Wang ZR, Du WL, Kou CG, Yu Q, Kosten TR, Zhang XY (2013) Association between DBH 19 bp insertion/deletion polymorphism and cognition in first-episode schizophrenic patients. Schizophr Res 147(2–3):236–240

    Article  PubMed  Google Scholar 

  • Ishiguro H, Kim KT, Joh TH, Kim KS (1993) Neuron-specific expression of human dopamine beta-hydroxylase gene requires both the cAMP-reponse element and a silencer region. J Biol Chem 268(24):17987–17994

    CAS  PubMed  Google Scholar 

  • Jeste DV (2004) Tardive dyskinesia rates with atypical antipsychotics in older adults. J Clin Psychiatry 65(Suppl 9):21–24

    CAS  PubMed  Google Scholar 

  • Jeste DV, Neckers LM, Wagner RL, Wise CD, Staub RA, Rogol A, Potkin SG, Bridge TP, Wyatt RJ (1981) Lymphocyte monoamine oxidase and plasma prolactin and growth hormone in tardive dyskinesia. J Clin Psychiatry 42(2):75–77

    CAS  PubMed  Google Scholar 

  • Kane JM (2004) Tardive dyskinesia rates with atypical antipsychotics in adults: prevalence and incidence. J Clin Psychiatry 65(Suppl 9):16–20

    CAS  PubMed  Google Scholar 

  • Kaufmann CA, Jeste DV, Shelton RC, Linnoila M, Kafka MS, Wyatt RJ (1986) Noradrenergic and neuroradiological abnormalities in tardive dyskinesia. Biol Psychiatry 21(8–9):799–812

    Article  CAS  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276

    Article  CAS  PubMed  Google Scholar 

  • Li CR, Chung YC, Park TW, Yang JC, Kim KW, Lee KH, Hwang IK (2009) Clozapine-induced tardive dyskinesia in patients with schizophrenia taking clozapine as a first-line antipsychotic drug. World J Biol Psychiatry 10(4 Pt 3):919–924

    Article  PubMed  Google Scholar 

  • Margolese HC, Chouinard G, Kolivkis TT, Beauclair L, Miller R, Annable L (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics. Part 2: incidence and management strategies in patients with schizophrenia. Can J Psychiatry 50(11):703–714

    PubMed  Google Scholar 

  • McCreadie RG, Thara R, Kamath S, Padmavathy R, Latha S, Mathrubootham N, Menon MS (1996) Abnormal movements in never-medicated Indian patients with schizophrenia. Br J Psychiatry 168(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T, Ahle G, Maroldt A, Alfter D, Maier W, Nöthen MM, Rietschel M (2001) Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 104(5):375–379

    Article  CAS  PubMed  Google Scholar 

  • Muller DJ, Shinkai T, De Luca V, Kennedy JL (2004) Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J 4(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8(7):536–546

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed Central  PubMed  Google Scholar 

  • Nitsche MA, Monte-Silva K, Kuo MF, Paulus W (2010) Dopaminergic impact on cortical excitability in humans. Rev Neurosci 21(4):289–298

    CAS  PubMed  Google Scholar 

  • Remington G, Kwon J, Collins A, Laporte D, Mann S, Christensen B (2007) The use of electronic monitoring (MEMS) to evaluate antipsychotic compliance in outpatients with schizophrenia. Schizophr Res 90(1–3):229–237

    Article  PubMed  Google Scholar 

  • Schooler NR, Kane JM (1982) Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 39(4):486–487

    CAS  PubMed  Google Scholar 

  • Soares KV, McGrath JJ (1999) The treatment of tardive dyskinesia—a systematic review and meta-analysis. Schizophr Res 39(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Wang F, Fan H, Yan Q, Cui K, Yuan W, Zhao F, Zhao L, Yuan J, Yang F, Kosten TR, Zhang XY (2013) The interaction of polymorphisms of IL10 and DBH was associated with general symptoms of PANSS with TD in Chinese Han schizophrenic patients. PLoS One 8(8):e70963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M, Arai M, Itokawa M, Niizato K, Iritani S, Ozaki N, Takahashi M, Kakita A, Takahashi H, Nawa H, Keino-Masu K, Arikawa-Hirasawa E, Arinami T (2010) Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 35(5):1155–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka S, Syu A, Ishiguro H, Inada T, Horiuchi Y, Ishikawa M, Koga M, Noguchi E, Ozaki N, Someya T, Kakita A, Takahashi H, Nawa H, Arinami T (2011) DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J 13(1):27–34

    Article  PubMed  Google Scholar 

  • Tang YL, Epstein MP (2007) Genotypic and haplotypic associations of the DBH gene with plasma dopamine beta-hydroxylase activity in African Americans. Eur J Hum Genet 15(8):878–883

    Article  CAS  PubMed  Google Scholar 

  • Tarsy D, Baldessarini RJ (2006) Epidemiology of tardive dyskinesia: is risk declining with modern antipsychotics? Mov Disord 21(5):589–598

    Article  PubMed  Google Scholar 

  • Van Os J, Fahy T, Jones P, Harvey I, Toone B, Murray R (1997) Tardive dyskinesia: who is at risk? Acta Psychiatr Scand 96(3):206–216

    Article  PubMed  Google Scholar 

  • Wagner RL, Jeste DV, Phelps BH, Wyatt RD (1982) Enzyme studies in tardive dyskinesia.I. One year biochemical follow-up. J Clin Psychopharmacol 2(5):312–314

    Article  CAS  PubMed  Google Scholar 

  • Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D (2012) Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res 137(1–3):246–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinshilboum RM (1978) Serum dopamine beta-hydroxylase. Pharmacol Rev 30(2):133–166

    CAS  PubMed  Google Scholar 

  • Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667

    Article  CAS  PubMed  Google Scholar 

  • Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim KS, Kim CH, Malison RT, Gelernter J, Cubells JF (2001) A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68(2):515–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Qi LY, Wang F, Xiu MH, Chen S, Wu GY, Kosten TA, Kosten TR (2009) Gender differences in the prevalence, risk and clinical correlates of tardive dyskinesia in Chinese schizophrenia. Psychopharmacology 205(4):647–654

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Xiu MH, Hui L, Liu H, Luo X, Zuo L, Zhang H, Kosten TA, Kosten TR (2012) Association of functional dopamine-beta-hydroxylase (DBH) 19 bp insertion/deletion polymorphism with smoking severity in male schizophrenic smokers. Schizophr Res 141(1):48–53

    Article  PubMed  Google Scholar 

  • Zhou N, Yu Q, Li X, Yu Y, Kou C, Li W, Xu H, Luo X, Zuo L, Kosten TR, Zhang XY (2013) Association of the dopamine β-hydroxylase 19 bp insertion/deletion polymorphism with positive symptoms but not tardive dyskinesia in schizophrenia. Hum Psychopharmacol 28(3):230–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Beijing Municipal Natural Science Foundation (7132063 and 7072035), National Natural Science Foundation of China (81371477), NARSAD Independent Investigator Grant (20314), the National Key Technology R&D Program in the 11th Five Year Plan of China (2009BAI77B06), and the Wenzhou Municipal Sci-Tech Bureau Program (H20100021). These sources had no further role in study design, data collection and analysis, decision to publish, or preparation of the article.

Conflict of interest

No conflict of interest was disclosed for each author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, L., Han, M., Huang, X.F. et al. Possible association between DBH 19 bp insertion/deletion polymorphism and clinical symptoms in schizophrenia with tardive dyskinesia. J Neural Transm 122, 907–914 (2015). https://doi.org/10.1007/s00702-014-1327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1327-7

Keywords

Navigation