Skip to main content

Advertisement

Log in

The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Auditory event-related potentials (AERPs) are widely used in diverse fields of today’s neuroscience, concerning auditory processing, speech perception, language acquisition, neurodevelopment, attention and cognition in normal aging, gender, developmental, neurologic and psychiatric disorders. However, its transposition to clinical practice has remained minimal. Mainly due to scarce literature on normative data across age, wide spectrum of results, variety of auditory stimuli used and to different neuropsychological meanings of AERPs components between authors. One of the most prominent AERP components studied in last decades was N1, which reflects auditory detection and discrimination. Subsequently, N2 indicates attention allocation and phonological analysis. The simultaneous analysis of N1 and N2 elicited by feasible novelty experimental paradigms, such as auditory oddball, seems an objective method to assess central auditory processing. The aim of this systematic review was to bring forward normative values for auditory oddball N1 and N2 components across age. EBSCO, PubMed, Web of Knowledge and Google Scholar were systematically searched for studies that elicited N1 and/or N2 by auditory oddball paradigm. A total of 2,764 papers were initially identified in the database, of which 19 resulted from hand search and additional references, between 1988 and 2013, last 25 years. A final total of 68 studies met the eligibility criteria with a total of 2,406 participants from control groups for N1 (age range 6.6–85 years; mean 34.42) and 1,507 for N2 (age range 9–85 years; mean 36.13). Polynomial regression analysis revealed that N1 latency decreases with aging at Fz and Cz, N1 amplitude at Cz decreases from childhood to adolescence and stabilizes after 30–40 years and at Fz the decrement finishes by 60 years and highly increases after this age. Regarding N2, latency did not covary with age but amplitude showed a significant decrement for both Cz and Fz. Results suggested reliable normative values for Cz and Fz electrode locations; however, changes in brain development and components topography over age should be considered in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaho R (1996) The effects of antiepileptic drugs on cognition in normal volunteers. Psychiatry Clin Neurosci 50:60–61

    Google Scholar 

  • Altieri N (2013) Neural dynamics of audiovisual integration for speech and non-speech stimuli: a psychophysical study. Open Neurosci J 7:5–18

    Google Scholar 

  • Amenedo E, Díaz F (1998) Aging-related changes in processing of non-target and target stimuli during an auditory oddball task. Biol Psychol 48:235–267

    CAS  PubMed  Google Scholar 

  • Anderer P, Semlitsch HV, Saletu B (1996) Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr clin Neurophysiol 99:458–472

    CAS  PubMed  Google Scholar 

  • Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B (1998a) Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroencephalogr clin Neurophysiol 108:160–174

    CAS  PubMed  Google Scholar 

  • Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B (1998b) Electrical sources of P300 event-related brain potentials revealed by low resolution electromagnetic tomography. 1. Effect of normal aging. Neuropsychobiology 37:20–27

    CAS  PubMed  Google Scholar 

  • Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12(1):12–21

    CAS  PubMed  Google Scholar 

  • Barrett G, Neshige R, Shibasaki H (1987) Human auditory and somatosensory event-related potentials: effects of response condition and age. Electroencephalogr Clin Neurophysiol 66:409–417

    CAS  PubMed  Google Scholar 

  • Barry RJ, Kirkaikul S, Hodder D (2000) EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. Int J Psychophysiol 39:39–50

    CAS  PubMed  Google Scholar 

  • Barry RJ, de Pascalis V, Hodder D, Clarke AR, Johnstone SJ (2003) Preferred EEG brain states at stimulus onset in a fixed interstimulus interval auditory oddball task, and their effects on ERP components. Int J Psychophysiol 47:187–198

    PubMed  Google Scholar 

  • Barry RJ, Rushby JA, Johnstone SJ, Clarke AR, Croft RJ, Lawrence CA (2004) Preferred EEG brain states at stimulus onset in a fixed interstimulus interval auditory oddball task, and their effects on ERP components. Clin Neurophysiol 115:2593–2601

    PubMed  Google Scholar 

  • Barry RJ, Rushby JA, Smith JL, Clarke AR, Croft RJ (2006) Dynamics of narrow-band EEG phase effects in the passive auditory oddball task. Eur J Neurosci 24:291–304

    PubMed  Google Scholar 

  • Bennett M, Hacker P (2007) Philosophical foundations of neuroscience. In: Bennett M, Dennett D, Hacker P, Searle J (eds) Neuroscience and philosophy: brain, mind and language, 1st edn. Columbia University Press, New York, pp 3–49

    Google Scholar 

  • Bentin S, Carmon A (1984) Verbal information processing and hemispheric AEP asymmetry. Ann N Y Acad Sci 425:166–170

    CAS  PubMed  Google Scholar 

  • Berger H (1929) Uber das Elektrenkephalogramm das menchen. Archiv fur Psychiatrie 87:527–570

    Google Scholar 

  • Bertoli S, Probst R (2005) Lack of standard N2 in elderly participants indicates inhibitory processing deficit. NeuroReport 16(17):1933–1937

    PubMed  Google Scholar 

  • Bortoletto M, Tona G, Scozzari S, Sarasso S, Stegagno L (2011) Effects of sleep deprivation on auditory change detection: a N1-Mismatch Negativity study. Int J Psychophysiol 81:312–316

    PubMed  Google Scholar 

  • Boucher O, Bastien C, Saint-Amour D, Dewailly E, Ayotte P, Jacobson J et al (2010) Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with Inuit children. Neurotoxicology 31:373–384

    CAS  PubMed  Google Scholar 

  • Brigham J, Moss HB, Murrelle EL, Kirisci L, Spinelli JS (1997) Event-related potential negative shift in sons of polysubstance- and alcohol-use disorder fathers. Psych Res 73:133–146

    CAS  Google Scholar 

  • Brown WS, Marsh JT, La Rue A (1983) Exponential electrophysiological aging: P300 latency. Electroencephalogr Clin Neurophysiol 55:277–285

    CAS  PubMed  Google Scholar 

  • Brown KJ, Gonsalvez CJ, Harris AWF, Williams LM, Gordon E (2002) Target and non-target ERP disturbances in first episode vs. chronic schizophrenia. Clin Neurophysiol 113:1754–1763

    CAS  PubMed  Google Scholar 

  • Brown CR, Clarke AR, Barry RJ (2006) Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task. Int J Psychophysiol 62:77–86

    PubMed  Google Scholar 

  • Bruneau N, Roux S, Guérin P, Barthélémy C, Lelord G (1997) Temporal prominence of auditory evoked potentials (N1 wave) in 4–8 year-old children. Psychophysiology 34:32–38

    CAS  PubMed  Google Scholar 

  • Cahn B, Polich J (2009) Meditation (Vipassana) and the P3a event-related brain potential. Int J Psychophysiol 72:51–60

    PubMed Central  PubMed  Google Scholar 

  • Cansino S, Williamson SJ, Karron D (1994) Tonotopic organization of human auditory association cortex. Brain Res 663:38–50

    CAS  PubMed  Google Scholar 

  • Čeponienė R, Rinne T, Näätänen R (2002) Maturation of cortical sound processing as indexed by event-related potentials. Clin Neurophysiol 108:870–882

    Google Scholar 

  • Čeponienė R, Lepistö T, Alku P, Aro H, Näätänen R (2003) Event-related potential indices of auditory vowel processing in 3-year-old children. Clin Neurophysiol 114:652–661

    PubMed  Google Scholar 

  • Čeponienė R, Westerfield M, Torki M, Townsend J (2008) Modality-specificity of sensory aging in vision and audition: evidence from event-related potentials. Brain Res 1215:53–68

    PubMed  Google Scholar 

  • Chao LL, Knight RT (1997a) Age-related prefrontal alterations during auditory memory. Neurobiol Aging 18(1):87–95

    CAS  PubMed  Google Scholar 

  • Chao LL, Knight RT (1997b) Prefrontal deficits in attention and inhibitory control with aging. Cereb Cortex 7(1):63–69

    CAS  PubMed  Google Scholar 

  • Chao LL, Lindgren JA, Flenniken DL, Weiner WW (2004) ERP evidence of impaired central nervous system function in virally suppressed HIV patients on antiretroviral therapy. Clin Neurophysiol 115:1583–1591

    PubMed Central  PubMed  Google Scholar 

  • Chunhau P, Shimono M, Iwanaga M, Hasegawa R, Honda Y, Shirahata A et al (2005) Analysis of P3 in a continuous 40-min auditory oddball task. Int Cong Series 1278:105–108

    Google Scholar 

  • Cohen HL, Ji J, Chorlian DB, Begleiter H, Porjesz B (2002) Alcohol-related ERP changes recorded from different modalities: a topographic analysis. Alcohol Clin Exp Res 26(3):303–317

    PubMed  Google Scholar 

  • Courchesne E (1990) Chronology of postnatal human brain development: event-related potential, positron emission tomography, myelinogenesis, and synaptogenesis studies. In: Rohrbaugh JW, Parasuraman R, Johnson R (eds) Event-related brain potentials: basic issues and applications. Oxford University Press, New York, pp 210–241

    Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    PubMed  Google Scholar 

  • Dassanayake T, Gawarammana IB, Weerasinghe V, Dissanayake PS, Pragaash S, Dawson A, Senanayake N (2009) Auditory event-related potential changes in chronic occupational exposure to organophosphate pesticides. Clin Neurophysiol 120:1693–1698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis PA (1939) Effects of acoustic stimuli on the waking human brain. J Neurophysiology 2:494–499

    Google Scholar 

  • Davis H, Zerlin S (1966) Acoustic relations of the human vertex potential. J Acoust Soc Am 39:109–116

    CAS  PubMed  Google Scholar 

  • Demiralp T, Yordanova J, Kolev V, Ademoglu A, Devrim M, Samar VJ (1999) Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain Lang 66:129–145

    CAS  PubMed  Google Scholar 

  • Dixit A, Vaney N, Tandon OP (2006) Evaluation of cognitive brain functions in caffeine users: a P3 evoked potential study. Indian J Physiol Pharmacol 50(2):175–180

    PubMed  Google Scholar 

  • Donchin E (1981) Presidential address, 1980. Surprise!. Surprise? Psychophysiology 18:493–513

    CAS  PubMed  Google Scholar 

  • Duncan C, Barry R, Connolly J, Fischer C, Michie P, Näätänen R et al (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908

    PubMed  Google Scholar 

  • Dustman RE, Emmerson RY, Shearer DE (1996) Life span changes in electrophysiological measures of inhibition. Brain Cogn 30(1):109–126

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1988) On the rate of maturation of sensory evoked potentials. Electroencephalogr Clin Neurophysiol 70(4):293–305

    CAS  PubMed  Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1980) Magnetic auditory responses from the human brain. A preliminary report. Scand Audiol 9:185–190

    CAS  PubMed  Google Scholar 

  • Enoki H, Sanada S, Yoshinaga H, Oka E, Ohtahara S (1993) The effects of age on the N200 component of the auditory event-related potentials. Cogn Brain Res 1:161–167

    CAS  Google Scholar 

  • Eysenck MW, Keane MT (2003) (eds) Cognitive psychology: a student’s handbook, 4th edn. Psychology Press, East Sussex, pp 1–27

  • Fabiani M, Gratton G, Federmeier (2007) Event-related brain potentials: methods, theory, and applications. In: Cacioppo J, Tassinary LG, Berntson GG (eds) The Handbook of Psychophysiology, 3rd edn. Cambridge University Press, New York, pp 94–119

  • Ford JM, Pfefferbaum A (1991) Event-related potentials and eyeblink responses in automatic and controlled processing: effects of age. Electroencephalogr Clin Neurophysiol 78:361–377

    CAS  PubMed  Google Scholar 

  • Ford JM, Mathalon DH, Kalba S, Marsh L, Pfefferbaum A (2001) N1 and P300 abnormalities in patients with schizophrenia, epilepsy, and epilepsy with schizophrenia like features. Biol Psychiatry 49:848–860

    CAS  PubMed  Google Scholar 

  • Friedman D, Simpson GV, Hamberger M (1993) Age-related changes in scalp topography to novel and target stimuli. Psychophysiology 30:383–396

    CAS  PubMed  Google Scholar 

  • Friedman D, Kazmerski V, Fabiani M (1997) An overview of age-related changes in the scalp distribution of P3b. Electroencephalogr Clin Neurophysiol 104:498–513

    CAS  PubMed  Google Scholar 

  • Gandelman-Marton R, Theitler J, Klein C, Rabey JM (2010) The effects of immediate and short-term retest on the latencies and amplitudes of the auditory event-related potentials in healthy adults. J Neurosci Methods 186:77–80

    PubMed  Google Scholar 

  • Gilley PM, Sharma A, Dorman M, Martin K (2005) Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol 116:646–657

    Google Scholar 

  • Gilmore CS, Clementz BA, Buckley PF (2005) Stimulus sequence affects schizophrenia–normal differences in event processing during an auditory oddball task. Cogn Brain Res 24:215–227

    Google Scholar 

  • Gilmore CS, Clementz BA, Berg P (2009) Hemispheric differences in auditory oddball responses during monaural versus binaural stimulation. Int J Psychophysiol 73:326–333

    PubMed Central  PubMed  Google Scholar 

  • Gölgeli A, Süer C, Özesmi Ç, Dolu N, Aşcioğ lu M, Şahin Ö (1999) The effect of sex differences in young adults on event-related potentials. Int J Neurosci 99:69–77

    PubMed  Google Scholar 

  • Gonsalvez CJ, Gordon E, Grayson S, Barry RJ, Lazzaro I, Bahramali H (1999) Is the target-to-target interval a critical determinant of P3 amplitude? Psychophysiology 36:643–654

    CAS  PubMed  Google Scholar 

  • Goodin DS, Squires KC, Henderson BH, Starr A (1978) Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalogr Clin Neurophysiol 44:447–458

    CAS  PubMed  Google Scholar 

  • Guney F, Genc B, Kutlu R, Ilhan B (2009) Auditory P300 event-related potential in tobacco smokers. J Clin Neurosci 16:1311–1315

    PubMed  Google Scholar 

  • Haig AR, Rennie C, Gordon E (1997) The use of Gaussian component modelling to elucidate average ERP component overlap in schizophrenia. J Psychophysiol 11:173–187

    Google Scholar 

  • Hamm JP, Ethridge LE, Shapiro JR, Pearlson GD, Tamminga CA, Sweeney JA, Keshavan MS, Thaker GK, Clementz BA (2013) Family history of psychosis moderates early auditory cortical response abnormalities in non-psychotic bipolar disorder. Bipolar Disord 15:774–786

    PubMed  Google Scholar 

  • Hari R, Aittoniemi K, Järvinen M-L, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res 40:237–240

    CAS  PubMed  Google Scholar 

  • Hasher L, Zacks RT (1988) Working memory, comprehension, and aging: a review and new view. In: Bower GH (ed) The Psychology of Learning and Motivation, 22. Academic Press, San Diego, pp 193–225

    Google Scholar 

  • Hegerl U, Gaebel W, Gutzman H, Ulrich G (1988) Auditory evoked potentials as possible predictors of outcome in schizophrenic outpatients. Int J Psychophysiol 6:207–214

    CAS  PubMed  Google Scholar 

  • Henkin Y, Kishon-Rabin L, Gadoth N, Pratt H (2002) Auditory event-related potentials during phonetic and semantic processing in children. Audiol Neurootol 7:228–239

    PubMed  Google Scholar 

  • Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Ann Rev Psychol 34:33–61

    CAS  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    CAS  PubMed  Google Scholar 

  • Hirata K, Katayama S, Yamazaki K, Fujikane M, Katayama K (1996) Electric field distribution of event-related potentials in stroke patients. Brain Topogr 8(3):279–284

    CAS  PubMed  Google Scholar 

  • Ho M-C, Chou C-Y, Huang C-F, Lin Y-T, Shih C-S, Han S-Y, Shen M-H et al (2012) Age-related changes of task-specific brain activity in normal aging. Neurosci Lett 507:78–83

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163(2):195–205

    CAS  PubMed  Google Scholar 

  • Inui K, Okamoto H, Miki K, Gunji A, Kakigi R (2006) Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study. Cereb Cortex 16:18–30

    PubMed  Google Scholar 

  • Iragui VJ, Kutas M, Mitchiner MR, Hillyard SA (1993) Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology 30:10–22

    CAS  PubMed  Google Scholar 

  • Jääskeläinen IP (2012) Introduction to cognitive neuroscience. Ventus Publishing ApS, Denmark, pp 92–112. http://pt.scribd.com/doc/102335497/Introduction-to-Cognitive-Neuroscience

    Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Nat Acad Sci (USA) 101:6809–6814

    Google Scholar 

  • Johnstone SJ, Barry RJ, Anderson JW, Coyle SF (1996) Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task. Int J Psychophysiol 24:223–238

    CAS  PubMed  Google Scholar 

  • Johnstone SJ, Barry RJ, Anderson JW (2001) Topographic distribution and developmental timecourse of auditory event-related potentials in two subtypes of attention-deficit hyperactivity disorder. Int J Psychophysiol 42:73–94

    CAS  PubMed  Google Scholar 

  • Kazis A, Kimiskidis V, Georgiadis G, Kapinas K (1996) Cognitive event-related potentials and magnetic resonance imaging in myotonic dystrophy. Neurophysiol Clin 26:75–84

    CAS  PubMed  Google Scholar 

  • Kok A (1999) Varieties of inhibition: manifestations in cognition, event-related potentials and aging. Acta Psychol (Amst) 101(2–3):129–158

    CAS  Google Scholar 

  • Kreukels BPC, Hamburger HL, de Ruiter MB, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB (2008) ERP amplitude and latency in breast cancer survivors treated with adjuvant chemotherapy. Clin Neurophysiol 119:533–541

    PubMed  Google Scholar 

  • Ladish C, Polich J (1989) P300 and probability in children. J Exp Child Psychol 48:212–223

    CAS  PubMed  Google Scholar 

  • Lembreghts M, Crasson M, EL Ahmadi A, Timsit-Berthier M (1995) Éude de la variabilité interindividuelle des potentiels évoqués auditifs exogènes et endogènes en condition d’attention volontaire. Neurophysiol Clin 25:203–223

    CAS  PubMed  Google Scholar 

  • Liasis A, Bamiou DE, Boyd S, Towell A (2006) Evidence for a neurophysiologic auditory deficit in children with benign epilepsy with centro-temporal spikes. J Neural Transm 113:939–949

    CAS  PubMed  Google Scholar 

  • Lucchesi L, Pompéia S, Manzano G, Kohn A, Galduroz J, Bueno O, Tufik T (2003) Flunitrazepam-induced changes in neurophysiological, behavioural, and subjective measures used to assess sedation. Prog Neuro-Psychopharmacol Biol Psychiatry 27:525–533

    CAS  Google Scholar 

  • Martin BA, Tremblay KL, Korczak P (2008) Speech evoked potentials: from the laboratory to the clinic. Ear Hear 29:285–313

    PubMed  Google Scholar 

  • May P, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    PubMed  Google Scholar 

  • McGee T, Kraus N, Nicol T (1997) Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects. Electroencephalogr Clin Neurophysiol 104:359–368

    CAS  PubMed  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    PubMed  Google Scholar 

  • Mueller V, Brehmer Y, von Oertzen T, Li S-C, Lindenberger U (2008) Electrophysiological correlates of selective attention: a lifespan comparison. BMC Neurosci 9:18

    PubMed Central  PubMed  Google Scholar 

  • Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller H-J et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    PubMed  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Top 20(4):249–264

    Google Scholar 

  • Näätänen R (1975) Selective attention and evoked potentials in humans—a critical review. Biol Psychol 2:237–307

    PubMed  Google Scholar 

  • Näätänen R (1982) Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull 92:605–640

    PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329

    Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    PubMed  Google Scholar 

  • Neuhaus AH, Popescu FC, Rentzsch J, Gallinat J (2013) Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification. Schizophr Bull doi:10.1093/schbul/sbt151

  • Nikjeh DA, Lister JJ, Frisch SA (2009) Pre-attentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training. Ear Hear 30:43–46

    Google Scholar 

  • Novak GP, Ritter W, Vaughan HG Jr, Wiznitzer ML (1990) Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalogr Clin Neurophysiol 75:255–275

    CAS  PubMed  Google Scholar 

  • Novak GP, Ritter W, Vaughan HG Jr (1992) Mismatch detection and the latency of temporal judgements. Psychophysiology 29:399–411

    Google Scholar 

  • Ogawa T, Tanaka H, Hirata K (2009) Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clin Neurophysiol 120:659–664

    PubMed  Google Scholar 

  • Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr clin Neurophysiol 94:26–40

    CAS  PubMed  Google Scholar 

  • Papanicolaou AC, Baumann S, Rogers RL, Saydjari C, Amparo EG, Eisenberg HM (1990) Localization of auditory response sources using magnetoencephalography and magnetic resonance imaging. Arch Neurol 47:33–37

    CAS  PubMed  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    CAS  PubMed  Google Scholar 

  • Peters A (2002) Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res 136:455–465

    PubMed  Google Scholar 

  • Picton TW, Stuss DT, Champagne SC, Nelson RF (1984) The effects of age on human event-related potentials. Psychophysiology 21:312–325

    CAS  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    PubMed Central  PubMed  Google Scholar 

  • Ponton CW, Moore JK, Eggermont JJ (1999) Prolonged deafness limits auditory system developmental plasticity: evidence from evoked potentials study in children with cochlear implants. Scand Audiol Suppl 51:13–22

    CAS  PubMed  Google Scholar 

  • Ponton CW, Eggermont JJ, Kwong B, Don M (2000) Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol 111:220–236

    CAS  PubMed  Google Scholar 

  • Potts G, Hirayasu Y, O’Donnell B, Shenton M, McCarley R (1998a) High-density recording and topographic analysis of the auditory oddball event-related potential in patients with schizophrenia. Biol Psychiatry 44:982–989

    CAS  PubMed  Google Scholar 

  • Potts G, Dien J, Hartry-Speiser A, McDougal L, Tucker D (1998b) Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalogr clin Neurophysiol 106:444–456

    CAS  PubMed  Google Scholar 

  • Rance G, Cone-Wesson B, Wunderlich J, Dowell R (2002) Speech perception and cortical event related potentials in children with auditory neuropathy. Ear Hear 23:239–253

    PubMed  Google Scholar 

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD et al (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7(3):268–282

    CAS  PubMed  Google Scholar 

  • Reinvang I, Nordby H, Nielsen CS (2000) Information processing deficits in head injury assessed with ERPs reflecting early and late processing stages. Neuropsychologia 38:995–1005

    CAS  PubMed  Google Scholar 

  • Ritter W, Vaughan HG (1969) Averaged evoked responses in vigilance and discrimination: a reassessment. Science 164:326–328

    CAS  PubMed  Google Scholar 

  • Ritter W, Simson R, Vaughan H, Friedman D (1979) A brain event related to the making of a sensory discrimination. Science 203:1358–1361

    CAS  PubMed  Google Scholar 

  • Rosburg T, Boutros NN, Ford JM (2008) Reduced auditory evoked potential component N100 in schizophrenia—a critical review. Psychiatry Res 161:259–274

    PubMed  Google Scholar 

  • Sakamoto K, Nakata H, Kakigi R (2009) The effect of mastication on human cognitive processing: a study using event-related potentials. Clin Neurophysiol 120:41–50

    PubMed  Google Scholar 

  • Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62:437–448

    CAS  PubMed  Google Scholar 

  • Schneider A, Leigh MJ, Adams P, Nanakul R, Chechi T, Olichney J, Hagerman R, Hessl D (2013) Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol 27(10):956–963

    CAS  PubMed  Google Scholar 

  • Segalowitz S, Bernstein D, Lawson S (2001) P300 event-related potential decrements in well-functioning university students with mild head injury. Brain Cogn 45:342–356

    CAS  PubMed  Google Scholar 

  • Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr clin Neurophysiol 104:540–545

    CAS  PubMed  Google Scholar 

  • Shelley A-M, Silipo G, Javitt D (1999) Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction. Schizophr Res 37:65–79

    CAS  PubMed  Google Scholar 

  • Siedenberg R, Goodin DS, Aminoff MJ, Rowley HA, Roberts TPL (1996) Comparison of late components in simultaneously recorded event-related electrical potentials and event-related magnetic fields. Electroencephalogr clin Neurophysiol 99:191–197

    CAS  PubMed  Google Scholar 

  • Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr clin Neurophysiol 38(4):387–401

    CAS  PubMed  Google Scholar 

  • Sumi N, Nan’no H, Fujimoto O, Ohta Y, Takeda M (2000) Interpeak latency of auditory event-related potentials (P300) in senile depression and dementia of the Alzheimer type. Psychiatry Clin Neurosci 54(6):679–684

    CAS  PubMed  Google Scholar 

  • Tanaka H, Arai M, Harada M, Hozumi A, Hirata K (2012) Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1. Clin Neurophysiol 123:261–269

    CAS  PubMed  Google Scholar 

  • Tarter R, Blackson T, Brigham J, Moss H, Caprara G (1995) The association between childhood irritability and liability to substance use in early adolescence: a 2-year follow-up study of boys at risk for substance abuse. Drug Alcohol Depend 39:253–261

    CAS  PubMed  Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92

    CAS  PubMed  Google Scholar 

  • Tomé D, Marques-Teixeira J, Barbosa F (2012) Temporal lobe epilepsy in childhood—a study model of auditory processing. J Neurol Neurophysiol 3(2). doi:10.4172/2155-9562.1000123

  • Toscano J, McMurray B, Dennhardt J, Luck S (2010) Continuous perception and graded categorization: electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech. Psychological Sci 21(10):1532–1540

    Google Scholar 

  • Tremblay KL, Piskosz M, Souza P (2003) Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysiol 114(7):1332–1343

    PubMed  Google Scholar 

  • Tsai M-L, Hung K-L, Tung W, Chiang T-R (2012) Age-changed normative auditory event-related potential value in children in Taiwan. J Form Med Assoc 111:245–252

    Google Scholar 

  • Ullsperger P, Freude G, Erdmann U (2001) Auditory probe sensitivity to mental workload changes—an event-related potential study. Int J Psychophysiol 40:201–209

    CAS  PubMed  Google Scholar 

  • Valkonen-Korhonen M, Purhonena M, Tarkka I, Sipilä P, Partanen J, Karhu J et al (2003) Altered auditory processing in acutely psychotic never-medicated first-episode patients. Cogn Brain Res 17:747–758

    Google Scholar 

  • van Dinteren R, Arns M, Jongsma MLA, Kessels RPC (2014) P300 development across the lifespan: a systematic review and meta-analysis. PLoS One 9(2):e87347

    PubMed Central  PubMed  Google Scholar 

  • van Harten B, Laman DM, van Duijn H, Knol DL, Stam CJ, Scheltens P, Weinstein HC (2006) The auditory oddball paradigm in patients with vascular cognitive impairment: a prolonged latency of the N2 complex. Dement Geriatr Cogn Disord 21:322–327

    PubMed  Google Scholar 

  • Verma N, Nichols C, Greiffenstein M, Singh R, Hurst-Gordon D (1989) Waves earlier than P3 are more informative in putative subcortical dementias: a study with mapping and neuropsychological techniques. Brain Topogr 1(3):183–191

    CAS  PubMed  Google Scholar 

  • Wang W, Wang Y-H (2001) Sensation seeking correlates of passive auditory P3 to a single stimulus. Neuropsychologia 39:1188–1193

    CAS  PubMed  Google Scholar 

  • Wang W, Datta H, Sussman E (2005) The development of the length of the temporal window of integration for rapidly presented auditory information as indexed by MMN. Clin Neurophysiol 116:1695–1706

    PubMed  Google Scholar 

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292

    CAS  PubMed  Google Scholar 

  • Wetzel N, Widmann A, Schröger E (2011) Processing of novel identifiability and duration in children and adults. Biol Psychol 86:39–49

    PubMed  Google Scholar 

  • Whelan R, Lonergan R, Kiiski H, Nolan H, Kinsella K, Bramham J, O’Brien M et al (2010) A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls. Clin Neurophysiol 121:1420–1426

    CAS  PubMed  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21(3–4):147–163

    Google Scholar 

  • Winter O, Kok A, Kenemans J, Elton M (1995) Auditory event-related potentials to deviant stimuli during drowsiness and stage 2 sleep. Electroencephalogr clin Neurophysiol 96:398–412

    CAS  PubMed  Google Scholar 

  • Wise V, McFarlane AC, Clark CR, Battersby M (2009) Event-related potential and autonomic signs of maladaptive information processing during an auditory oddball task in panic disorder. Int J Psychophysiol 74:34–44

    PubMed  Google Scholar 

  • Wolpaw JR, Penry JK (1975) A temporal component of the auditory evoked response. Electroencephalogr clin Neurophysiol 39(6):609–620

    CAS  PubMed  Google Scholar 

  • Woods DL, Alho K, Algazi A (1993) Intermodal selective attention: evidence for processing in tonotópica auditory fields. Psychophysiology 30:287–295

    CAS  PubMed  Google Scholar 

  • Wright MJ, Geffen GM, Geffen LB (1996) ERP measures of stimulus processing during an auditory oddball task in Parkinson’s disease: evidence for an early information processing deficit. Parkinsonism Rel Disord 2(1):13–21

    CAS  Google Scholar 

  • Yamamoto T, Williamson SJ, Kaufman L, Nicholson C, Llinás R (1988) Magnetic localization of neuronal activity in the human brain. Proc Nat Acad Sci (USA) 85:8732–8736

    CAS  Google Scholar 

  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423

    CAS  PubMed  Google Scholar 

  • Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153

    PubMed  Google Scholar 

  • Zheng Y, Zhao F, Liang M, Bardsley B, Yang H, Zhang Z (2011) Toward an understanding of auditory evoked cortical event-related potentials: characteristics and classification. Audiol Med 1–10. doi:10.3109/1651386X.2010.537910

  • Zhu W, Zhang J, Liu H, Ding X, Ma Y, Zhou C (2008) Differential cognitive responses to guqin music and piano music in Chinese subjects: an event-related potential study. Neurosci Bull 24(1):21–28

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that there are no conflicts of interest in relation to the subject of this study. The contribution of Kamila Nowak was supported by NCBR grant No. INNOTECH-K1/IN1/30/159041/NCBR/12

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tomé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomé, D., Barbosa, F., Nowak, K. et al. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J Neural Transm 122, 375–391 (2015). https://doi.org/10.1007/s00702-014-1258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1258-3

Keywords

Navigation