Journal of Neural Transmission

, Volume 121, Issue 10, pp 1245–1257 | Cite as

6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson’s disease: respirometric, histological, and behavioral analyses

  • Andreas KupschEmail author
  • Werner Schmidt
  • Zemfira Gizatullina
  • Grazyna Debska-Vielhaber
  • Jürgen Voges
  • Frank Striggow
  • Patricia Panther
  • Herbert Schwegler
  • Hans-Jochen Heinze
  • Stefan Vielhaber
  • Frank Norbert GellerichEmail author
Neurology and Preclinical Neurological Studies - Original Article


Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson’s disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5 μg/2 μl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2–21, a progressive decrease in respiratory control ratio of up to −58 % was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25–5 μg/2 μl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.


Parkinson’s disease Respirometry 6-OHDA model Mitochondria complex 1 Dopamine Substantia nigra pars compacta Flux control coefficients 



Mitochondrial membrane potential


Adenine nucleotide


Flux control coefficient




Pearson’s correlation


Enzyme activity


Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid








Uninhibited respiration rate


Median forebrain bundle


3-(N-morpholino)propanesulfonic acid


Mitochondrial DNA




Phosphate-buffered saline


Parkinson’s disease


Respiratory control ratio


Relative complex I-dependent respiratory rate


Reactive oxygen species


Substantia nigra


Substantia nigra pars compacta


Tyrosine hydroxylase


Tyrosine hydroxylase immunoreactive



F.S. was supported by the Federal Ministry for Education and Research (BMBF Grant Number 03IS2211I/ProNetT3). A.K. was in part supported by Deutsche Forschungsgemeinschaft KFO 247 (Deep brain stimulation, Berlin).

We would like to thank J. Hübner and N. Huß for their excellent technical assistance.

Conflict of interest

The authors reported no financial interests or potential conflicts of interest.


  1. Baloh RH, Salavaggione E, Milbrandt J, Pestronk A (2007) Familial Parkinsonism and ophthalmoplegia from a mutation in the mitochondrial DNA helicase twinkle. Arch Neurol 64(7):998–1000. doi: 10.1001/archneur.64.7.998 PubMedCrossRefGoogle Scholar
  2. Banerjee R, Starkov AA, Beal MF, Thomas B (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792(7):651–663. doi: 10.1016/j.bbadis.2008.11.007 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38(5):515–517. doi: 10.1038/ng1769 PubMedCrossRefGoogle Scholar
  4. Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85(15):3367–3377. doi: 10.1002/jnr.21500 PubMedCrossRefGoogle Scholar
  5. Bové J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. doi: 10.1016/j.neuroscience.2011.10.057 PubMedCrossRefGoogle Scholar
  6. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. doi: 10.1042/BJ20110162 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443(7113):796–802. doi: 10.1038/nature05293 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chaudhuri KR, Healy DG, Schapira AH; National Institute for Clinical E (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5 (3):235–245. doi: 10.1016/S1474-4422(06)70373-8 Google Scholar
  9. Cohen G (1984) Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 5(1):77–82PubMedGoogle Scholar
  10. de Lau LM, Giesbergen PC, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MM (2004) Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 63(7):1240–1244PubMedCrossRefGoogle Scholar
  11. dos Santos El-Bachá R, Daval J-L, Koziel V, Netter P, Minn A (2001) Toxic effects of apomorphine on rat cultured neurons and glial C6 cells, and protection with antioxidants. Biochem Pharmacol 61(1):73-85. doi: 10.1016/S0006-2952(00)00524-4
  12. Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, Hoffer B, Cullheim S, Mohammed AH, Olson L, Larsson NG (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 104(4):1325–1330. doi: 10.1073/pnas.0605208103 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14PubMedCrossRefGoogle Scholar
  14. Gassen M, Glinka Y, Pinchasi B, Youdim MBH (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 308(2):219–225. doi: 10.1016/0014-2999(96)00291-9 PubMedCrossRefGoogle Scholar
  15. Gellerich FN, Kunz WS, Bohnensack R (1990) Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett 274(1–2):167–170PubMedCrossRefGoogle Scholar
  16. Gellerich FN, Deschauer M, Chen Y, Müller T, Neudecker S, Zierz S (2002) Mitochondrial respiratory rates and activities of respiratory chain complexes correlate linearly with heteroplasmy of deleted mtDNA without threshold and independently of deletion size. Biochim Biophys Acta 1556(1):41–52PubMedCrossRefGoogle Scholar
  17. Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, Vielhaber S, Heinze HJ, Striggow F (2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem J 443(3):747–755. doi: 10.1042/BJ20110765 PubMedCrossRefGoogle Scholar
  18. Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S (2013) The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65(3):180–190. doi: 10.1002/iub.1131 PubMedCrossRefGoogle Scholar
  19. Giordano S, Lee J, Darley-Usmar VM, Zhang J (2012) Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS ONE 7(9):e44610. doi: 10.1371/journal.pone.0044610 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Glinka YY, Youdim MB (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 292(3–4):329–332PubMedGoogle Scholar
  21. Glinka Y, Tipton KF, Youdim MB (1998) Mechanism of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine and its prevention by desferrioxamine. Eur J Pharmacol 351(1):121–129PubMedCrossRefGoogle Scholar
  22. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128(3):277–297PubMedCrossRefGoogle Scholar
  23. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem/FEBS 42(1):97–105CrossRefGoogle Scholar
  24. Hökfelt T, Ungerstedt U (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 60(2):269–297PubMedCrossRefGoogle Scholar
  25. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104PubMedGoogle Scholar
  26. Khaliulin I, Schneider A, Houminer E, Borman JB, Schwalb H (2004) Apomorphine prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Free Radic Biol Med 37(7):969–976. doi: 10.1016/j.freeradbiomed.2004.06.029 PubMedCrossRefGoogle Scholar
  27. Koh H, Chung J (2012) PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol Cells 34(1):7–13. doi: 10.1007/s10059-012-0100-8 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38(5):518–520. doi: 10.1038/ng1778 PubMedCrossRefGoogle Scholar
  29. Kunz WS, Kuznetsov AV, Clark JF, Tracey I, Elger CE (1999) Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J Neurochem 72(4):1580–1585PubMedCrossRefGoogle Scholar
  30. Kupsch A, Loschmann PA, Sauer H, Arnold G, Renner P, Pufal D, Burg M, Wachtel H, ten Bruggencate G, Oertel WH (1992) Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res 592(1–2):74–83PubMedCrossRefGoogle Scholar
  31. Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, Rossi A, Kadaja L, Peet N, Seppet E, Saks VA (1996) Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem/FEBS 241(3):909–915CrossRefGoogle Scholar
  32. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976. doi: 10.1038/nprot.2008.61 PubMedCrossRefGoogle Scholar
  33. Kyriazis M (2003) Neuroprotective, anti-apoptotic effects of apomorphine. J Anti Aging Med 6(1):21–28. doi: 10.1089/109454503765361551 PubMedCrossRefGoogle Scholar
  34. Lemasters JJ, Nieminen AL (1997) Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes. Biosci Rep 17(3):281–291PubMedCrossRefGoogle Scholar
  35. Lin MT, Cantuti-Castelvetri I, Zheng K, Jackson KE, Tan YB, Arzberger T, Lees AJ, Betensky RA, Beal MF, Simon DK (2012) Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease. Ann Neurol 71(6):850–854. doi: 10.1002/ana.23568 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, Oldfors A, Rautakorpi I, Peltonen L, Majamaa K, Somer H, Suomalainen A (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364(9437):875–882. doi: 10.1016/S0140-6736(04)16983-3 PubMedCrossRefGoogle Scholar
  37. Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34(1):55–65. doi: 10.1007/s11064-008-9656-2 PubMedCrossRefGoogle Scholar
  38. Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46(11):1313–1326. doi: 10.3109/10715762.2012.717273 PubMedCrossRefGoogle Scholar
  39. Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target: magnum overview. IUBMB Life 65(3):273–281. doi: 10.1002/iub.1147 PubMedCrossRefGoogle Scholar
  40. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  41. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7(1):97–109. doi: 10.1016/S1474-4422(07)70327-7 PubMedCrossRefGoogle Scholar
  42. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1(8649):1269PubMedCrossRefGoogle Scholar
  43. Seppet E, Gizatullina Z, Trumbeckaite S, Zierz S, Striggow F, Gellerich FN (2007) Mitochondrial medicine: the central role of cellular energetic depression and mitochondria in cell pathophysiology. In: Molecular System Bioenergetics. Wiley, New York, pp 479–520. doi: 10.1002/9783527621095.ch15
  44. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2(4):318–323. doi: 10.1038/ng1292-318 PubMedCrossRefGoogle Scholar
  45. Tobon-Velasco JC, Limon-Pacheco JH, Orozco-Ibarra M, Macias-Silva M, Vazquez-Victorio G, Cuevas E, Ali SF, Cuadrado A, Pedraza-Chaverri J, Santamaria A (2013a) 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-kappaB factors. Toxicology 304:109–119. doi: 10.1016/j.tox.2012.12.011 PubMedCrossRefGoogle Scholar
  46. Tobon-Velasco JC, Palafox-Sanchez V, Mendieta L, Garcia E, Santamaria A, Chamorro-Cevallos G, Limon ID (2013b) Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum. J Neural Transm. doi: 10.1007/s00702-013-0976-2 PubMedGoogle Scholar
  47. Trumbeckaite S, Gizatullina Z, Arandarcikaite O, Rohnert P, Vielhaber S, Malesevic M, Fischer G, Seppet E, Striggow F, Gellerich FN (2012) Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: protective effects of CsA, its immunosuppressive congener [D-Ser](8)CsA, the novel non-immunosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801. Mitochondrion. doi: 10.1016/j.mito.2012.07.110 PubMedGoogle Scholar
  48. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110PubMedCrossRefGoogle Scholar
  49. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493PubMedCrossRefGoogle Scholar
  50. Vlamings R, Visser-Vandewalle V, Kozan R, Kaplan S, Steinbusch HW, Temel Y (2009) Bilateral high frequency stimulation of the subthalamic nucleus normalizes COX activity in the substantia nigra of Parkinsonian rats. Brain Res 1288:143–148. doi: 10.1016/j.brainres.2009.06.091 PubMedCrossRefGoogle Scholar
  51. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Futur Cardiol 8(6):863–884. doi: 10.2217/fca.12.58 CrossRefGoogle Scholar
  52. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156(1):65–72PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Andreas Kupsch
    • 1
    • 2
    Email author
  • Werner Schmidt
    • 4
  • Zemfira Gizatullina
    • 3
  • Grazyna Debska-Vielhaber
    • 2
  • Jürgen Voges
    • 1
    • 3
  • Frank Striggow
    • 4
  • Patricia Panther
    • 1
  • Herbert Schwegler
    • 5
  • Hans-Jochen Heinze
    • 2
    • 3
  • Stefan Vielhaber
    • 2
  • Frank Norbert Gellerich
    • 2
    • 3
    Email author
  1. 1.Department of Stereotactic NeurosurgeryOtto-von-Guericke-Universität/Medizinische FakultätMagdeburgGermany
  2. 2.Department of NeurologyOtto-von-Guericke-Universität/Medizinische FakultätMagdeburgGermany
  3. 3.Department of Behavioral NeurologyLeibniz-Institute for NeurobiologyMagdeburgGermany
  4. 4.Laboratory of Neurodegeneration and Intervention StrategiesGerman Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
  5. 5.Institute of AnatomyOtto-von-Guericke-Universität/Medizinische FakultätMagdeburgGermany

Personalised recommendations