Advertisement

Journal of Neural Transmission

, Volume 121, Issue 6, pp 593–600 | Cite as

Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats

  • Nan Liang
  • Peng Wang
  • Shilei WangEmail author
  • Shuhong Li
  • Yu Li
  • Jinying Wang
  • Min Wang
Translational Neurosciences - Original Article

Abstract

The mitochondrial calcium uniporter (MCU) transports Ca2+ from the cytoplasm to the mitochondrial matrix and thus maintains Ca2+ homeostasis. Previous studies have reported that inhibition of MCU by ruthenium red (RR) protects the brain from ischemia/reperfusion (I/R) injury and that mitochondrial fission plays an important role in I/R injury. However, it is still not known whether MCU affects mitochondrial fission. In the present study, treatment with RR was found to decrease the concentration of free calcium in the mitochondria, calcineurin enzyme activity and dynamin-related protein 1 expression, and treatment with spermine was found to have the opposite effect in organisms subjected to occlusion of the middle cerebral artery lasting 2 h followed by 24 h reperfusion. These results indicate that MCU may be related to mitochondrial fission via modulating mitochondrial Ca2+ uptake and this relationship between MCU and mitochondrial fission may protect the brain from I/R injury.

Keywords

Ischemia/reperfusion injury MCU Mitochondrial fission Mitochondrial calcium 

Notes

Acknowledgments

We would like to thank Dr. Ruyong Yao of the Central Laboratory of the Affiliated Hospital of Qingdao University Medical College, Prof. Jinshan Tan of the Electron Microscopy Research Office of Qingdao University Medical College, and Prof. Yunliang Guo of the Cerebrovascular Disease Institute for offering technical support.

References

  1. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63PubMedCrossRefGoogle Scholar
  2. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15:706–716PubMedCrossRefGoogle Scholar
  3. Cereghetti GM, Stangherlin A, de Brito OM et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cereghetti GM, Costa V, Scorrano L (2010) Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ 17(11):1785–1794PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569PubMedCrossRefGoogle Scholar
  6. Chen H, Chan DC (2004) Mitochondrial dynamics in mammals. Curr Top Dev Biol 59:119–144PubMedCrossRefGoogle Scholar
  7. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944PubMedCentralPubMedCrossRefGoogle Scholar
  8. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  9. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda) 21:233–241CrossRefGoogle Scholar
  10. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956PubMedCrossRefGoogle Scholar
  11. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525PubMedCrossRefGoogle Scholar
  12. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78PubMedGoogle Scholar
  13. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364PubMedCrossRefGoogle Scholar
  14. Lemasters JJ, Qian T, Bradham CA, Brenner DA et al (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 31(4):305–319PubMedCrossRefGoogle Scholar
  15. Li L, Stefan MI, Le Novère N (2012) Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS ONE 7(9):e43810PubMedCentralPubMedCrossRefGoogle Scholar
  16. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedCrossRefGoogle Scholar
  17. Pradhan RK, Qi F, Beard DA et al (2010) Characterization of membrane potential dependency of mitochondrial Ca2+ uptake by an improved biophysical model of mitochondrial Ca2+ uniporter. PLoS One 5(10):e13278PubMedCentralPubMedCrossRefGoogle Scholar
  18. Rivera A, Maxwell SA (2005) The p53-induced gen-6(proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Bio Chem 280:29346–29354 [PubMed: 15914462]CrossRefGoogle Scholar
  19. Saotome M, Safiulina D, Szabadkai G et al (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733PubMedCentralPubMedCrossRefGoogle Scholar
  20. Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256PubMedCentralPubMedCrossRefGoogle Scholar
  21. Sripetchwandee J, Sanit J, Chattipakorn N, Chattipakorn SC (2013) Mitochondrial calcium uniporter blocker effectively prevents brain mitochondrial dysfunction caused by iron overload. Life Sci 92(4–5):298–304PubMedCrossRefGoogle Scholar
  22. Toido S, Brekenridge DG, Mezzaroma E, Benjamin W et al (2012) Caspase cleavage product of BAP31 induces mitochondrial ischemia–reperfusion injury in the mouse. J Am Heart Assoc. doi: 10.1161/JAHA.112.002360
  23. Vay L, Hernández-Sanmiguel E, Santo-Domingo J et al (2007) Modulation of Ca2+ release and Ca2+ oscillations in HeLa cells and fibroblasts by mitochondrial Ca2+ uniporter stimulation. J Physiol 580:39–49PubMedCentralPubMedCrossRefGoogle Scholar
  24. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  25. Yang JP, Liu XF, Liu HJ, Xu GL, Ma YP (2008) Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect. Neurosci Lett 434:212–217PubMedCrossRefGoogle Scholar
  26. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663PubMedCrossRefGoogle Scholar
  27. Yu SJ, Kim JR, Lee CK, Han JE, Lee JH, Kim HS, Hong JH, Kang SG (2005) Gastrodia elata Blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions. Biol Pharm Bull 28:1016–1020PubMedCrossRefGoogle Scholar
  28. Yu N, Wang S, Li Y et al (2012) The calcium uniporter regulates the permeability transition pore in isolated cortical mitochondria. Neural Regen Res 7(2):109–113Google Scholar
  29. Zhang N, Wang S, Li Y, Che L, Zhao Q (2013) A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104–109PubMedCrossRefGoogle Scholar
  30. Zhao Q, Wang S, Wang P et al (2013) The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism. Mol Med Rep. doi: 10.3892/mmr.2013.1321 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Nan Liang
    • 1
  • Peng Wang
    • 1
  • Shilei Wang
    • 1
    Email author
  • Shuhong Li
    • 1
  • Yu Li
    • 1
  • Jinying Wang
    • 1
  • Min Wang
    • 1
  1. 1.Department of AnesthesiologyAffiliated Hospital of Qingdao University Medical CollegeQingdaoChina

Personalised recommendations