Skip to main content
Log in

Diurnal rodents as an advantageous model for affective disorders: novel data from diurnal degu (Octodon degus)

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Circadian rhythms are strongly associated with affective disorders and recent studies have suggested utilization of diurnal rodents as model animal for circadian rhythms-related domains of these disorders. Previous work with the diurnal fat sand rat and Nile grass rat demonstrated that short photoperiod conditions result in behavioral changes including anxiety- and depression-like behavior. The present study examined the effect of manipulating day length on activity rhythms and behavior of the diurnal degu. Animals were housed for 3 weeks under either a short photoperiod (5-h:19-h LD) or a neutral photoperiod (12-h:12-h LD) and then evaluated by sweet solution test and the forced swim test for depression-like behavior, and in the light/dark box and open field for anxiety-like behavior. Results indicate that short photoperiod induced depression-like behavior in the forced swim test and the sweet solution preference test and anxiety-like behavior in the open field compared with animals maintained in a neutral photoperiod. No effects were shown in the light/dark box. Short photoperiod-acclimated degu showed reduced total activity duration and activity was not restricted to the light phase. The present study further supports the utilization of diurnal rodents to model circadian rhythms-related affective change. Beyond the possible diversity in the mechanisms underlying diurnality in different animals, there are now evidences that in three different diurnal species, the fat sand rat, the grass Nile rat and the degu, shortening of photoperiod results in the appearance of anxiety- and depression-like behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abílio VC, Freitas FM, Dolnikoff MS, Castrucci AM, Frussa-Filho R (1999) Effects of continuous exposure to light on behavioral dopaminergic supersensitivity. Biol Psychiatry 45:1622–1629

    PubMed  Google Scholar 

  • Abílio VC, Vera JAR, Ferreira LSM, Duarte CRM, Martins CR, Torres-Leite D, Ribeiro Rde A, Frussa-Filho R (2003) Effects of melatonin on behavioral dopaminergic supersensitivity. Life Sci 72:3003–3015

    PubMed  Google Scholar 

  • Albrecht U (2010) Circadian clocks in mood-related behaviors. Ann Med 42:241–251

    PubMed  Google Scholar 

  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity. (Silver Spring) 17:2100–2102

    Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009a) Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 201:343–346

    PubMed  Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009b) We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 12:83–93

    CAS  PubMed  Google Scholar 

  • Ashkenazy-Frolinger T, Kronfeld-Schor N, Juetten J, Einat H (2009) It is darkness and not light: depression-like behaviors of diurnal unstriped Nile grass rats maintained under a short photoperiod schedule. J Neurosci Methods 186:165–170

    PubMed  Google Scholar 

  • Avery DH, Dahl K, Savage MV, Brengelmann GL, Larsen LH, Kenny MA, Eder DN, Vitiello MV, Prinz PN (1997) Circadian temperature and cortisol rhythms during a constant routine are phase-delayed in hypersomnic winter depression. Biol Psychiatry 41:1109–1123

    CAS  PubMed  Google Scholar 

  • Bacigalupe LD, Rezende EL (2003) Activity and space use by degus: a trade-off between thermal conditions and food availability? J Mammal 84:311–318

    Google Scholar 

  • Barak O, Kronfeld-Schor N (2013) Activity rhythms and Masking response in the diurnal Fat Sand Rat under laboratory conditions. Chronobiol Int 30(9):1123–1134

    PubMed  Google Scholar 

  • Benedetti F, Barbini B, Campori E, Fulgosi MC, Pontiggia A, Colombo C (2001) Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: new findings supporting the internal coincidence model? J Psychiatr Res 35:323–329

    CAS  PubMed  Google Scholar 

  • Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B:23–26

    PubMed  Google Scholar 

  • Berle JO, Hauge ER, Oedegaard KJ, Holsten F, Fasmer OB (2010) Actigraphic registration of motor activity reveals a more structured behavioural pattern in schizophrenia than in major depression. BMC Res Notes 3:149

    PubMed Central  PubMed  Google Scholar 

  • Bilu C, Kronfeld-Schor N (2013) Effects of circadian phase and melatonin injection on anxiety-like behavior in nocturnal and diurnal rodents. Chronobiol Int 30:828–836

    CAS  PubMed  Google Scholar 

  • Bolker J (2012) Model organisms: there’s more to life than rats and flies. Nature 491:31–33

    CAS  PubMed  Google Scholar 

  • Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345

    CAS  PubMed  Google Scholar 

  • Challet E (2007) Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655

    CAS  PubMed  Google Scholar 

  • Cohen R, Kronfeld-Schor N (2006) Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol Behav 87:563–574

    CAS  PubMed  Google Scholar 

  • Cohen R, Smale L, Kronfeld-Schor N (2009) Plasticity of circadian activity and body temperature rhythms in golden spiny mice. Chronobiol Int 26:430–446

    PubMed  Google Scholar 

  • Cohen R, Kronfeld-Schor N, Ramanathan C, Baumgras A, Smale L (2010a) The substructure of the suprachiasmatic nucleus: similarities between nocturnal and diurnal spiny mice. Brain Behav Evol 75:9–22

    PubMed Central  PubMed  Google Scholar 

  • Cohen R, Smale L, Kronfeld-Schor N (2010b) Masking and temporal niche switches in spiny mice. J Biol Rhythms 25:47–52

    PubMed  Google Scholar 

  • Colonnello V, Iacobucci P, Anderson MP, Panksepp J (2011a) Brief periods of positive peer interactions mitigate the effects of total social isolation in young Octodon degus. Dev Psychobiol 53:280–290

    PubMed  Google Scholar 

  • Colonnello V, Iacobucci P, Fuchs T, Newberry R, Panksepp J (2011b) Octodon degus. A useful animal model for social-affective neuroscience research: basic description of separation distress, social attachment and play. Neurosci Behav Rev 35:1854–1863

    Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15:695–699

    CAS  PubMed  Google Scholar 

  • Crawley JN (2007) Behavioral neuroscience. In: Crawley JN, McKay J (eds) Current protocols in neuroscience. Wiley Interscience, New York

    Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of the mouse: advances in modeling human depression and anxiety. Nat Rev Drug Discov 4:77–790

    Google Scholar 

  • Cuesta M, Mendoza J, Clesse D, Pévet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210:501–513

    CAS  PubMed  Google Scholar 

  • Dahl K, Avery DH, Lewy AJ, Savage MV, Brengelmann GL, Larsen LH, Vitiello MV, Prinz PN (1993) Dim light melatonin onset and circadian temperature during a constant routine in hypersomnic winter depression. Acta Psychiatr Scand 88:60–66

    CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    CAS  PubMed  Google Scholar 

  • Dietzel M, Saletu B, Lesch OM, Sieghart W, Schjerve M (1986) Light treatment in depressive illness. Polysomnographic, psychometric and neuroendocrinological findings. Eur Neurol 25(Suppl 2):93–103

    PubMed  Google Scholar 

  • Eilam D, Dayan T, Ben-Elyahu S, Schulman II, Shefer G, Hendrie CA (1999) Differential behavioural and hormonal responses of voles and spiny mice to owl calls. Anim Behav 58:1085–1093

    PubMed  Google Scholar 

  • Einat H (2010) Strategies for the development of animal models for bipolar disorder: new opportunities and new challenges. In: Zarate CA, Manji HK (eds) Behavioral neurobiology of bipolar disorder and its treatment. Current topics in behavioral neuroscience, vol 5. Springer, Berlin, pp 69–87

  • Einat H, Kronfeld-Schor N (2009) Utilizing diurnal model animals in the study of depression. Front Neurosci 3:242–243

    Google Scholar 

  • Einat H, Kronfeld-Schor N, Eilam D (2006) Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res 173:153–157

    PubMed  Google Scholar 

  • Flaisher-Grinberg S, Overgaard S, Einat H (2009) Attenuation of high sweet solution preference by mood stabilizers: a possible mouse model for the increased reward-seeking domain of mania. J Neurosci Methods 177:44–50

    CAS  PubMed  Google Scholar 

  • Flaisher-Grinberg S, Gampetro DR, Kronfeld-Schor N, Einat H (2011) Inconsistent effects of photoperiod manipulations in tests for affective-like changes in mice: implications for the selection of appropriate model animals. Behav Pharmacol 22:23–30

    PubMed  Google Scholar 

  • Genaro G, Schmidek WR (2000) Exploratory activity of rats in three different environments. Ethology 106:849–859

    Google Scholar 

  • Giedke H, Schwärzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6:361–377

    PubMed  Google Scholar 

  • Goel N, Lee TM (1995) Sex differences and effects of social cues on daily rhythms following phase advances in Octodon degus. Physiol Behav 58:205–213

    CAS  PubMed  Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM et al (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162(4):656–662

    PubMed  Google Scholar 

  • Gordijn MC, Beersma DG, Bouhuys AL, Reinink E, Van den Hoofdakker RH (1994) A longitudinal study of diurnal mood variation in depression; characteristics and significance. J Affect Disord 31:261–273

    CAS  PubMed  Google Scholar 

  • Gutman R, Dayan T, Levy O, Schubert I, Kronfeld-Schor N (2011) The Effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active Spiny mice. PLoS One 6:e23446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagenauer MH, Lee TM (2008) Circadian organization of the diurnal Caviomorph rodent, Octodon degus. Biol Rhythm Res 39:269–289

    Google Scholar 

  • Hauge ER, Berle JØ, Oedegaard KJ, Holsten F, Fasmer OB (2011) Nonlinear analysis of motor activity shows differences between schizophrenia and depression: a study using Fourier analysis and sample entropy. PLoS One 6:e16291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendrie CA, Weiss SM, Eilam D (1996) Exploration and predation models of anxiety: evidence from laboratory and wild species. Pharmacol Biochem Behav 54:13–20

    CAS  PubMed  Google Scholar 

  • Hendrie CA, Weiss SM, Eilam D (1998) Behavioural response of wild rodents to the calls of an owl: a comparative study. J Zool 245:439–446

    Google Scholar 

  • Jawed S, Kim B, Ottenhof T, Brown GM, Werstiuk ES, Niles LP (2007) Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur J Pharmacol 560:17–22

    CAS  PubMed  Google Scholar 

  • Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppä T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson L-G, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28:734–739

    CAS  PubMed  Google Scholar 

  • Kara NZ, Einat H (2013) Rodent models for mania: practical considerations. Cell, tissue research. (Special issue, rodent models of psychiatric disorders: practical considerations), advance online publication. http://www.ncbi.nlm.nih.gov/pubmed/23504091

  • Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA 108:1657–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kas MJ, Edgar DM (1998) Crepuscular rhythms of EEG sleep–wake in a hystricomorph rodent, Octodon degus. J Biol Rhythms 13:9–17

    CAS  PubMed  Google Scholar 

  • Kas MJ, Edgar DM (1999) A nonphotic stimulus inverts the diurnal–nocturnal phase preference in Octodon degus. J Neurosci 19:328–333

    CAS  PubMed  Google Scholar 

  • Kenagy GJ, Vasquez RA (2004) Microstructure of summer activity bouts of degus in a thermally heterogeneous habitat. J Mammal 85:260–267

    Google Scholar 

  • Kenagy GJ, Nespolo RF, Vasquez RA, Bozinovic F (2002a) Daily and seasonal limits of time and temperature to activity of degus. Revista Chilena Hist Nat 75:567–581

    Google Scholar 

  • Kenagy GJ, Vásquez RA, Nespolo RF, Bozinovic F (2002b) A time–energy analysis of daytime surface activity in degus, Octodon degus. Revista Chilena Hist Nat 75:149–156

    Google Scholar 

  • Kripke DF (1998) Light treatment for nonseasonal depression: speed, efficacy, and combined treatment. J Affect Disord 49:109–117

    CAS  PubMed  Google Scholar 

  • Krivisky K, Ashkenazy T, Kronfeld-Schor N, Einat H (2011) Antidepressants reverse short-photoperiod-induced, forced swim test depression-like behavior in the diurnal fat sand rat: further support for the utilization of diurnal rodents for modeling affective disorders. Neuropsychobiology 63:191–196

    CAS  PubMed  Google Scholar 

  • Krivisky K, Einat H, Kronfeld-Schor N (2012) Effects of morning compared with evening bright light administration to ameliorate short-photoperiod induced depression- and anxiety-like behaviors in a diurnal rodent model. J Neural Transm 119:1241–1248

    PubMed  Google Scholar 

  • Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62:101–114

    CAS  PubMed  Google Scholar 

  • Kronfeld-Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol Biochem Zool 73:37–44

    CAS  PubMed  Google Scholar 

  • Kronfeld-Schor N, Dayan T, Elvert R, Haim A, Zisapel N, Heldmaier G (2001) On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint. Am Nat 158:451–457

    CAS  PubMed  Google Scholar 

  • Lam RW, Levitan RD (2000) Pathophysiology of seasonal affective disorder: a review. J Psychiatry Neurosci 25:469–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leach G, Adidharma W, Yan L (2013a) Depression-like responses induced by daytime light deficiency in the diurnal grass rat (Arvicanthis niloticus). PLoS One 8:e57115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leach G, Ramanathan C, Langel J, Yan L (2013b) Responses of brain and behavior to changing day-length in the diurnal grass rat (Arvicanthis niloticus). Neuroscience 234:31–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TM (2004) Octodon degus: a diurnal, social, and long-lived rodent. ILAR J 45:14–24

    CAS  PubMed  Google Scholar 

  • Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB (2008) Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 147B:134–166

    CAS  PubMed  Google Scholar 

  • Lenox RH, Gould TD, Manji HK (2002) Endophenotypes in bipolar disorder. Am J Med Genet 114:391–406

    PubMed  Google Scholar 

  • Lewy AJ, Bauer VK, Cutler NL, Sack RL, Ahmed S et al (1998) Morning vs evening light treatment of patients with winter depression. Arch Gen Psychiatry 55(10):890–896

    CAS  PubMed  Google Scholar 

  • Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson SJ Jr, Akil H, Bunney WE (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 110:9950–9955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandelik YT, Dayan (2000) Foraging activity of Acomys cahirinus under different illumination levels: comparing giving-up densities to direct behavioral observations. Isr J Zool 46:167–168

    Google Scholar 

  • Martijena ID, Tapia M, Molina VA (1996) Altered behavioral and neurochemical response to stress in benzodiazepine-withdrawn rats. Brain Res 712:239–244

    CAS  PubMed  Google Scholar 

  • McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molina hernandez M, Téllez-Alcántara P (2000) Long photoperiod regimen may produce antidepressant actions in the male rat. Prog Neuropsychopharmacol Biol Psychiatry 24:105–116

    CAS  PubMed  Google Scholar 

  • Moscovici L, Kotler M (2009) A multistage chronobiologic intervention for the treatment of depression: a pilot study. J Affect Disord 116:201–207

    PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    CAS  PubMed  Google Scholar 

  • Nowak JZ, Zawilska JB (1998) Melatonin and its physiological and therapeutic properties. Pharm World Sci 20:18–27

    CAS  PubMed  Google Scholar 

  • Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl) 104:255–259

    CAS  Google Scholar 

  • Partonen T et al (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    CAS  PubMed  Google Scholar 

  • Prendergast BJ, Kay LM (2008) Affective and adrenocorticotrophic responses to photoperiod in Wistar rats. J Neuroendocrinol 20:261–267

    CAS  PubMed  Google Scholar 

  • Prendergast BJ, Nelson RJ (2005) Affective responses to changes in day length in Siberian hamsters. (Phodopus sungorus). Psychoneuroendocrinology 30:438–452

    PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    CAS  PubMed  Google Scholar 

  • Pyter LM, Nelson RJ (2006) Enduring effects of photoperiod on affective behaviors in Siberian hamsters. (Phodopus sungorus). Behav Neurosci 120:125–134

    PubMed  Google Scholar 

  • Raoux N, Benoit O, Dantchev N, Denise P, Franc B, Allilaire JF, Widlöcher D (1994) Circadian pattern of motor activity in major depressed patients undergoing antidepressant therapy: relationship between actigraphic measures and clinical course. Psychiatry Res 52:85–98

    CAS  PubMed  Google Scholar 

  • Refinetti R (1996) Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent, Octodon degus. Physiol Behav 60:959–961

    CAS  PubMed  Google Scholar 

  • Refinetti R (2004) Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment. Physiol Behav 82:285–294

    CAS  PubMed  Google Scholar 

  • Roll U, Dayan T, Kronfeld-Schor N (2006) On the role of phylogeny in determining activity patterns of rodents. Evol Ecol 20:479–490

    Google Scholar 

  • Rotics S, Dayan T, Levy O, Kronfeld-Schor N (2011) Light masking in the field: an experiment with nocturnal and diurnal spiny mice under semi-natural field conditions. Chronobiol Int 28:70–75

    PubMed  Google Scholar 

  • Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadock VA, Kaplan HI (2007) Kaplan and Sadock’s synopsis of psychiatry. Lippincott Williams, Wilkins

    Google Scholar 

  • Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shuboni DD, Cramm S, Yan L, Nunez AA, Smale L (2012) Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. J Biol Rhythms 27:299–307

    CAS  PubMed  Google Scholar 

  • Sinitskaya N, Schuster-Klein C, Guardiola-Lemaitre B, Gourmelen S, Pévet P, Challet E (2008) Short day-length increases sucrose consumption and adiposity in rats fed a high-fat diet. Psychoneuroendocrinology 33:1269–1278

    CAS  PubMed  Google Scholar 

  • Smale L, Heideman PD, French JA (2005) Behavioral neuroendocrinology in nontraditional species of mammals: things the “knockout” mouse CAN’T tell us. Horm Behav 48:474–483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smale L, Nunez AA, Schwartz MD (2008) Rhythms in a diurnal brain. Biol Rhythm Res 39:305–318

    Google Scholar 

  • Sonntag A, Rothe B, Guldner J, Yassouridis A, Holsboer F, Steiger A (1996) Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression 4:1–13

    CAS  PubMed  Google Scholar 

  • Tallman JF (1999) Neuropsychopharmacology at the new millennium: new industry directions. Neuropsychopharmacology 20:99–105

    CAS  PubMed  Google Scholar 

  • Tan Z-L, Bao A-M, Tao M, Liu Y-J, Zhou J-N (2007) Circadian rhythm of salivary serotonin in patients with major depressive disorder. Neuro Endocrinol Lett 28:395–400

    CAS  PubMed  Google Scholar 

  • Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7:462–466

    CAS  PubMed  Google Scholar 

  • Teicher MH, Glod CA, Magnus E, Harper D, Benson GE, Krueger K, McGreenery CE (1997) Circadian rest–activity disturbances in seasonal affective disorder. Arch Gen Psychiatry 54:124–130

    CAS  PubMed  Google Scholar 

  • Todder D, Caliskan S, Baune BT (2006) Night locomotor activity and quality of sleep in quetiapine-treated patients with depression. J Clin Psychopharmacol 26:638–642

    CAS  PubMed  Google Scholar 

  • Volkers AC, Tulen JHM, van den Broek WW, Bruijn JA, Passchier J, Pepplinkhuizen L (2003) Motor activity and autonomic cardiac functioning in major depressive disorder. J Affect Disord 76:23–30

    PubMed  Google Scholar 

  • Wallace-Boone TL, Newton AE, Wright RN, Lodge NJ, McElroy JF (2008) Behavioral and pharmacological validation of the gerbil forced-swim test: effects of neurokinin-1 receptor antagonists. Neuropsychopharmacology 33:1919–1928

    CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    CAS  PubMed  Google Scholar 

  • Wehr TA, Wirz-Justice A, Goodwin FK, Duncan W, Gillin JC (1979) Phase advance of the circadian sleep–wake cycle as an antidepressant. Science 206:710–713

    CAS  PubMed  Google Scholar 

  • Wehr TA, Jacobsen FM, Sack DA, Arendt J, Tamarkin L et al (1986) Phototherapy of seasonal affective disorder. Time of day and suppression of melatonin are not critical for antidepressant effects. Arch Gen Psychiatry 43(9):870–875

    CAS  PubMed  Google Scholar 

  • Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453

    CAS  PubMed  Google Scholar 

  • Wirz-Justice A, Wehr TA, Goodwin FK, Kafka MS, Naber D, Marangos PJ, Campbell IC (1980) Antidepressant drugs slow circadian rhythms in behavior and brain neurotransmitter receptors (proceedings). Psychopharmacol Bull 16:45–47

    CAS  PubMed  Google Scholar 

  • Woods CA, Boraker DK (1975) Octodon degus. American Society of Mammalogists. Mammalian Species 67:1-5

  • Wu JC, Kelsoe JR, Schachat C, Bunney BG, DeModena A, Golshan S, Gillin JC, Potkin SG, Bunney WE (2009) Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiatry 66:298–301

    CAS  PubMed  Google Scholar 

  • Yamada N, Martin-Iverson MT, Daimon K, Tsujimoto T, Takahashi S (1995) Clinical and chronobiological effects of light therapy on nonseasonal affective disorders. Biol Psychiatry 37:866–873

    CAS  PubMed  Google Scholar 

  • Zawilska JB, Derbiszewska T, Nowak JZ (1997) Prolonged exposure of chicks to light or darkness differentially affects the quinpirole-evoked suppression of serotonin N-acetyltransferase activity in chick retina: an impact on dopamine D4-like receptor. J Pineal Res 22:59–64

    CAS  PubMed  Google Scholar 

  • Zubidat AE, Ben-Shlomo R, Haim A (2007) Thermoregulatory and endocrine responses to light pulses in short-day acclimated social voles. (Microtus socialis). Chronobiol Int 24:269–288

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Kronfeld-Schor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazy-Frolinger, T., Einat, H. & Kronfeld-Schor, N. Diurnal rodents as an advantageous model for affective disorders: novel data from diurnal degu (Octodon degus). J Neural Transm 122 (Suppl 1), 35–45 (2015). https://doi.org/10.1007/s00702-013-1137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1137-3

Keywords

Navigation