Skip to main content
Log in

Novel putative mechanisms to link circadian clocks to healthy aging

  • Psychiatry and Preclinical Psychiatric Studies - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bass J, Turek FW (2005) Sleepless in America: a pathway to obesity and the metabolic syndrome? Arch Intern Med 165:15–16

    Article  PubMed  Google Scholar 

  • Bonaconsa M, Colavito V, Pifferi F, Aujard F, Schenker E, Dix S, Grassi-Zucconi G, Bentivoglio M, Bertini G (2013) Cell clocks and neuronal networks: neuron ticking and synchronization in aging and aging-related neurodegenerative disease. Curr Alzheimer Res 10:597–608

    Article  CAS  PubMed  Google Scholar 

  • Canaple L, Rambaud J, Dkhissi-Benyahya O et al (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20:1715–1727

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Obrietan K (2010) mTOR signaling and entrainment of the mammalian circadian Clock. Mol Cell Pharmacol 2:125–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao R, Lee B, Cho HY, Saklayen S, Obrietan K (2008) Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Mol Cell Neurosci 38:312–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythm 26:160–170

    Article  Google Scholar 

  • Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  • Coogan AN, Schutová B, Husung S, Furczyk K, Baune BT, Kropp P, Häßler F, Thome J (2013) The circadian system in Alzheimer’s disease: disturbances, mechanisms, and opportunities. Biol Psychiatry 74:333–339

    Article  PubMed  Google Scholar 

  • Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16:R914–R916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP, St Clair DK, Donohue KD, Striz M, O’Hara BF (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APP × PS1 knock-in mice, a model for Alzheimer’s disease. Exp Neurol 236:249–258

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Prochot JR, Cook DH, Tyler Smith J, Franklin KM (2013) Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res 1491:44–53

    Article  CAS  PubMed  Google Scholar 

  • Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Froy O (2011) Circadian rhythms, aging and life span in mammals. Physiol Bethesda 26:225–235

    Article  CAS  Google Scholar 

  • Froy O, Chapnik N, Miskin R (2006) Long-lived al-phaMUPA transgenic mice exhibit pronounced circadian rhythms. Am J Physiol Endocrinol Metab 291:E1017–E1024

    Article  CAS  PubMed  Google Scholar 

  • Furio AM, Cutrera RA, Castillo Thea V et al (2002) Effect of melatonin on changes in locomotor activity rhythm of Syrian hamsters injected with beta amyloid peptide 25–35 in the suprachiasmatic nuclei. Cell Mol Neurobiol 22:699–709

    Article  CAS  PubMed  Google Scholar 

  • Gery S, Koeffler HP (2007) The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol 72:459–464

    Article  CAS  PubMed  Google Scholar 

  • Gibson EM, Williams WP, Kriegsfeld LJ (2009) Aging in the circadian system: considerations for health, disease prevention and longevity. Exp Gerontol 44:51–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Guarente L (2012) Sirtuins and calorie restriction. Nat Rev Mol Cell Biol 13:207. doi:10.1038/nrm3308

    CAS  PubMed  Google Scholar 

  • Han C, Zhao X, Hatori M et al (2012) Evans regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-b. Nature 485:123–127

    Article  Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  CAS  PubMed  Google Scholar 

  • Howell MJ, Schenck CH, Crow SJ (2009) A review of nighttime eating disorders. Sleep Med Rev 13:23–34

    Article  PubMed  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes ME, DiTacchio L, Hayes KR et al (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5:e1000442

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim EB, Fang X, Fushan AA et al (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (2008) A systematic look at an old problem. Nature 451:644–647

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB, Kowald A (1997) Network theory of aging. Exp Gerontol 32:395–399

    Article  CAS  PubMed  Google Scholar 

  • Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythm 18:159–169

    Article  CAS  Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo T, Ozasa K, Mikami K (2006) Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164:549–555

    Article  PubMed  Google Scholar 

  • Kume K, Zylka MJ, Sriram S et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  • Levi F, Schibler U (2007) Circadian rhythms: mechanism and therapeutic implications. Annu Rev Pharmacol 47:493–528

    Article  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  • Lin JD, Liu C, Li S (2008) Integration of energy metabolism and the mammalian clock. Cell Cycle 7:453–457

    Article  CAS  PubMed  Google Scholar 

  • Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4:e1000023. doi:10.1371/journal.pgen.1000023

    Article  PubMed Central  PubMed  Google Scholar 

  • Luna-Moreno D, García-Ayala B, Díaz-Muñoz M (2012) Daytime restricted feeding modifies 24 h rhythmicity and subcellular distribution of liver glucocorticoid receptor and the urea cycle in rat liver. Br J Nutr 1:12

    Google Scholar 

  • Martinez-Vicente M, Sovak G, Cuervo AM (2005) Protein degradation and aging. Exp Gerontol 40:622–633

    Article  CAS  PubMed  Google Scholar 

  • McClung CA (2011) Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 21(Suppl 4):S683–S693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–2108

    Article  CAS  PubMed  Google Scholar 

  • Picard F, Kurtev M, Chung N et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci USA 69:1537–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Pulivarthy SR, Tanaka N, Welsh DK, De Haro L, Verma IM, Panda S (2007) Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. PNAS 104:20356–20361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rattan SI (2010) Synthesis, modification and turnover of proteins during aging. Adv Exp Med Biol 694:1–13

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 2011(146):682–695

    Article  Google Scholar 

  • Ryazanov AG, Nefsky BS (2002) Protein turnover plays a key role in aging. Mech Ageing Dev 123:207–213

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  CAS  PubMed  Google Scholar 

  • Scott EM, Carter AM, Grant PJ (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes Lond 32:658–662

    Article  CAS  PubMed  Google Scholar 

  • Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116:581–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha MK, Ohannesian JP, Heiman ML et al (1996) Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 97:1344–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solt LA, Kojetin DJ, Burris TP (2011) The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 3:623–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solt LA, Wang Y, Banerjee S et al (2012) Regulation of circadian behavior and metabolism by synthetic REV-ERB agonists. Nature 485:62–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sukumaran S, Jusko WJ, DuBois DC, Almon RR (2011) Light–dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action. J Appl Physiol 110:1732–1747

    Article  PubMed Central  PubMed  Google Scholar 

  • Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1:e3

    Article  Google Scholar 

  • Tate B, Aboody-Guterman KS, Morris AM, Walcott EC, Majocha RE, Marotta CA (1992) Disruption of circadian regulation by brain grafts that overexpress Alzheimer beta/A4 amyloid. Proc Natl Acad Sci USA 89:7090–7094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738

    PubMed  Google Scholar 

  • von Saint Paul U, Aschoff J (1978) Longevity among blowflies Phormia terraenovae R. D. kept in non-24-hour light–dark cycles. J Comp Physiol 127:191–195

    Article  Google Scholar 

  • Walker LC, Herndon JG (2010) Mosaic aging. Med Hypotheses 74:1048–1051

    Article  PubMed Central  PubMed  Google Scholar 

  • Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13:100–112

    Article  CAS  PubMed  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Woon PY, Kaisaki PJ, Bragança J et al (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 104:14412–14417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Wyse CA, Coogan AN, Selman C, Hazlerigg DG, Speakman JR (2010) Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited. Biol Lett 6:696–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Downes M, Yu RT et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erb alpha is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wu N, Curtin JC et al (2007) Rev-erb alpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UEFISCDI, PN-II-ID-PCE-2011-3-0848 and UEFISCDI FLARE2 (to A.M.B.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Popa-Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa-Wagner, A., Catalin, B. & Buga, AM. Novel putative mechanisms to link circadian clocks to healthy aging. J Neural Transm 122 (Suppl 1), 75–82 (2015). https://doi.org/10.1007/s00702-013-1128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1128-4

Keywords

Navigation