Skip to main content
Log in

Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V − log I function of the electroretinographic (ERG) b- and d-waves were investigated in light-adapted frog eyes. Sulpiride significantly decreased the absolute sensitivity of the b- and d-waves. The amplitude of the both waves was diminished over the whole intensity range studied. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The effect on the d-wave amplitude depended on stimulus intensity. The threshold of the d-wave was not significantly altered. The suprathreshold d-wave amplitude was enhanced at the lower stimulus intensities and remained unchanged at the higher ones. The results obtained indicate that the action of endogenous dopamine on the photopic ERG shows clear ON–OFF asymmetry. Participation of different classes of dopamine receptors is probably responsible for this difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton AC, Black LE, Sibley DR (1991) Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells. Mol Pharmacol 39:650–658

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Boatright JH, Hoel MJ, Iuvone PM (1989) Stimulation of endogenous dopamine release and metabolism in amphibian retina by light- and K+-evoked depolarization. Brain Res 482:164–168

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I, Marx MS, Ghilardi MF (1989) Systemic haloperidol administration increases the amplitude of the light- and dark-adapted ERG in the monkey. Clin Vision Sci 4:19–26

    Google Scholar 

  • Boelen MK, Boelen MG, Marshak DW (1998) Light-stimulated release of dopamine from the primate retina is blocked by 1-2-amino-4-phosphonobutyric acid (APB). Vis Neurosci 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • Citron MC, Erinoff L, Rickman DW, Brecha NC (1985) Modification of electroretinograms in dopamine-depleted retinas. Brain Res 345:186–191

    Article  CAS  PubMed  Google Scholar 

  • Dong CJ, McReynolds JS (1991) The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina. J Physiol 440:291–309

    CAS  PubMed  Google Scholar 

  • Fain GL (1976) Sensitivity of toad rods: dependence on wave-length and background illumination. J Physiol 261:71–101

    CAS  PubMed  Google Scholar 

  • Gardner B, Liu ZF, Jiang D, Sibley DR (2001) The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 59:310–321

    CAS  PubMed  Google Scholar 

  • Gibson CJ (1990) A simple perfusion system for measuring endogenous retinal dopamine release. J Neurosci Methods 32:75–79

    Article  CAS  PubMed  Google Scholar 

  • Godley BF, Wurtman RJ (1988) Release of endogenous dopamine from the superfused rabbit retina in vitro: effect of light stimulation. Brain Res 452:393–395

    Article  CAS  PubMed  Google Scholar 

  • Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922

    CAS  PubMed  Google Scholar 

  • He S, Weiler R, Vaney DI (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 418:33–40

    Article  CAS  PubMed  Google Scholar 

  • Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72:101–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holopigian K, Clewner L, Seiple W, Kupersmith MJ (1994) The effects of dopamine blockade on the human flash electroretinogram. Doc Ophthalmol 86:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hood DC, Hock PA (1975) Light adaptation of the receptors: increment threshold function for the frog’s rods and cones. Vision Res 15:545–553

    Article  CAS  PubMed  Google Scholar 

  • Hu EH, Pan F, Volgyi B, Bloomfield SA (2010) Light increases the gap junctional coupling of retinal ganglion cells. J Physiol 588:4145–4163

    Article  CAS  PubMed  Google Scholar 

  • Huppe-Gourgues F, Coude G, Lachapelle P, Casanova C (2005) Effects of intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram. Vision Res 45:137–145

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Haga T, Lameh J, Sadée W (1999) Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 260:112–119

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, Palmiter RD, Iuvone PM, McMahon DG (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359–9368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaffe MJ, Levinson PD, Zimmlichman R, Coen JC, Karson CN, de Monasterio FM (1987) The effect of metoclopramide on the ganzfeld electroretinogram. Vision Res 27:1693–1700

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Jung CS (2012) Gap junction contributions to the goldfish electroretinogram at the photopic illumination level. Korean J Physiol Pharmacol 16:219–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirsh M, Wagner HJ (1989) Release pattern of endogenous dopamine in teleost retinae during light adaptation and [harmacological stimulation. Vision Res 29:147–154

    Article  Google Scholar 

  • Ko F, Seeman P, Sun WS, Kapur S (2002) Dopamine D2 receptors internalize in their low-affinity state. Neuroreport 13:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Kolbinger W, Weiler R (1993) Modulation of endogenous dopamine release in the turtle retina: effects of light, calcium, and neurotransmitters. Vis Neurosci 10:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic ERG b-wave at higher stimulus intensities in humans. Jpn J Ophthalmol 44:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kramer SG (1971) Dopamine: a retinal neurotransmitter I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest Ophthal Vis Sci 10:438–452

    CAS  Google Scholar 

  • Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacol 28:519–526

    Article  CAS  Google Scholar 

  • Kupenova TN (2011) An inductive algorithm for smooth approximation of functions. Commun JINR, Dubna, E11-2011-97

  • Kupenova P, Belcheva S (1981) Effects of haloperidol, methylergometrine and phentolamine on the frog ERG. Experientia 37:852–854

    Article  CAS  PubMed  Google Scholar 

  • Kupenova P, Popova E, Vitanova L (2008) GABAa and GABAc receptor mediated influences on the intensity-response functioned of the b- and d-wave in the frog ERG. Vision Res 48:882–892

    Article  CAS  PubMed  Google Scholar 

  • Kupenova P, Vitanova L, Popova E (2010) GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis. J Neural Transm 117:431–444

    Article  CAS  PubMed  Google Scholar 

  • Lasater EM, Dowling JE (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA 82:3025–3029

    Article  CAS  PubMed  Google Scholar 

  • Lavoie J, Illiano P, Sotnikova TD, Gainetdinov RR, Beaulieu JM, Hébert M (2013) The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders. Biol Psychiatry. doi:10.1016/j.biopsych.2012.11.024

    Google Scholar 

  • Li L, Dowling JE (2000) Effects of dopamine depletion on visual sensitivity of zebrafish. J Neurosci 20:1893–1903

    CAS  PubMed  Google Scholar 

  • Li X, Schaeffel F, Konrad K, Eberhart Z (1996) A dose related response of 6-OHDA on chicken spectral sensitivity and oscillatory potentials of recording electroretinograms. Chin Med J 109:762–770

    CAS  PubMed  Google Scholar 

  • Lin ZS, Yazulla S (1994a) Depletion of retinal dopamine increases brightness perception in goldfish. Vis Neurosci 11:683–693

    Article  CAS  PubMed  Google Scholar 

  • Lin ZS, Yazulla S (1994b) Depletion of retinal dopamine does not affect the ERG b-wave increment threshold function in goldfish in vivo. Vis Neurosci 11:695–702

    Article  CAS  PubMed  Google Scholar 

  • Mills SL, Xia X-B, Hoshi H, Firth SI, Rice ME, Frishman LJ, Marshak DW (2007) Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Vis Neurosci 24:593–608

    Article  PubMed Central  PubMed  Google Scholar 

  • Mizota A, Adachi-Usami E (1993) Electroretinographic effects of haloperidol on the mouse retina. Doc Ophthalmol 85:151–160

    Article  CAS  PubMed  Google Scholar 

  • Mora-Ferrer C, Behrend K (2004) Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG. Vision Res 44:2067–2081

    Article  CAS  PubMed  Google Scholar 

  • Muresan Z, Besharse JC (1993) D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J Comp Neurol 331:149–160

    Article  CAS  PubMed  Google Scholar 

  • Naarendorp R, Hitchock PF, Sieving PA (1993) Dopaminergic modulation of rod pathway signals does not affect the scotopic ERG of cat at dark-adapted threshold. J Neurophysiol 70:1681–1691

    CAS  PubMed  Google Scholar 

  • Naka KI, Rushton WAH (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185:536–555

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Kurasaki S, Masuda T, Ukai K, Kubo S, Kadono H (1988) Effects of some psychotropic drugs on the b-wave of the electroretinogram in isolated rabbit retina. Jpn J Pharmacol 46:97–100

    Article  CAS  PubMed  Google Scholar 

  • Negishi K, Teranishi T, Kato S (1983) A GABA antagonist, bicuculline, exerts its uncoupling action on external horizontal cells through dopamine cells in carp retina. Neurosci Lett 37:261–266

    Article  CAS  PubMed  Google Scholar 

  • Oliver P, Jolicoeur FB, Lafond G, Drumheller A, Brunette JR (1987) Effects of retinal dopamine depletion on the rabbit electroretinogram. Doc Ophthalmol 66:359–371

    Article  CAS  PubMed  Google Scholar 

  • Parkinson D, Rando RR (1983) Effect of light on dopamine turnover and metabolism in rabbit retina. Invest Ophthalmol Vis Sci 24:384–388

    CAS  PubMed  Google Scholar 

  • Piccolino M, Neyton J, Gerschenfeld HM (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. J Neurosci 4:2477–2488

    CAS  PubMed  Google Scholar 

  • Popova E (2000) Glycinergic and GABAergic control of intensity-response function of frog ERG waves under different conditions of light stimulation. Acta Physiol Scand 170:225–242

    Article  CAS  PubMed  Google Scholar 

  • Popova E, Kupenova P (2009) Contribution of proximal retinal neurons to b- and d-wave of frog electroretinogram under different conditions of light adaptation. Vision Res 49:2001–2010

    Article  CAS  PubMed  Google Scholar 

  • Popova E, Kupenova P (2010) Contribution of voltage-gated sodium channels to b- and d-waves of frog electroretinogram under different conditions of light adaptation. Vision Res 50:88–98

    Article  CAS  PubMed  Google Scholar 

  • Popova E, Kupenova P (2011) Effects of dopamine D1 receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation. Vision Res 51:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Popova E, Kupenova P, Vitanova L, Mitova L (1995) ERG OFF response in frog retina : light adaptation and the effect of 2-amino-4-phosphonobutyrate. Acta Physiol Scand 154:377–386

    Article  CAS  PubMed  Google Scholar 

  • Puppala D, Maaswinkel H, Mason B, Legan SJ, Li L (2004) An in vivo microdialysis study of light.dark-modulation of vitreal dopamine release in zebrafish. J Neurocytol 33:193–201

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Zrenner E (1991) Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat. Exp Eye Res 52:425–430

    Article  CAS  PubMed  Google Scholar 

  • Skrandies W, Wässle H (1988) Dopamine and serotonin in cat retina: electroretinography and histology. Exp Brain Res 71:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. IOVS 45:1033–1040

    Google Scholar 

  • Vaquero CF, Pignatelli A, Partida GJ, Ishida AT (2001) A dopamine-and protein kinase A-dependent mechanism for network adaptation in retinal ganglion cells. J Neurosci 21:8624–8635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veruki M (1997) Dopaminergic neurons in the rat retina express dopamine D2/3 receptors. Eur J Neurosci 9:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–345

    Article  CAS  PubMed  Google Scholar 

  • Walkembach J, Brüss M, Urban BW, Barann M (2005) Interactions of metoclopramide and ergotamine with human 5-HT3A receptors and human 5-HT reuptake carriers. Br J Pharmacol 146:543–552

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Harsanyi K, Mangel SC (1997) Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J Neurophysiol 78:439–449

    CAS  PubMed  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  • Witkovsky P, Stone S, Besharse JC (1988) The effects of dopamine and related ligands on photoreceptor to horizontal cell transfer in the Xenopus retina. Biomed Res 9(suppl 2):93–107

    CAS  Google Scholar 

  • Witkovsky P, Nicholson C, Rice ME, Bohmaker K, Meller E (1993) Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc Natl Acad Sci USA 90:5667–5671

    Article  CAS  PubMed  Google Scholar 

  • Yazulla S, Lin ZS, Studholme KM (1996) Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior. Vision Res 36:4045–4057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant № 14/2012 from the Council for Medical Science, Medical University Sofia.

Conflict of interest

The author declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Popova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, E. Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes. J Neural Transm 121, 233–244 (2014). https://doi.org/10.1007/s00702-013-1103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1103-0

Keywords

Navigation