Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53. doi:10.1038/nrn1824
CAS
PubMed
Article
Google Scholar
Badawy AA, Dougherty DM, Richard DM (2010a) Specificity of the acute tryptophan and tyrosine plus phenylalanine depletion and loading tests I. Review of biochemical aspects and poor specificity of current amino acid formulations. Int J Tryptophan Res 2010:23–34
PubMed
Article
Google Scholar
Badawy AA, Dougherty DM, Richard DM (2010b) Specificity of the acute tryptophan and tyrosine plus phenylalanine depletion and loading tests part II: normalisation of the tryptophan and the tyrosine plus phenylalanine to competing amino acid ratios in a new control formulation. Int J Tryptophan Res 3:35–47
CAS
PubMed Central
PubMed
Article
Google Scholar
Bell C (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405. doi:10.1192/bjp.178.5.399
CAS
PubMed
Article
Google Scholar
Biggio G, Fadda F, Fanni P et al (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329
CAS
PubMed
Article
Google Scholar
Biggio G, Porceddu ML, Gessa GL (1976) Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic-adenosine-3′,5′-monophosphate content in the rat caudate nucleus induced by the acute administration of an aminoacid mixture lacking tyrosine and phenylalanine. J Neurochem 26:1253–1255
CAS
PubMed
Article
Google Scholar
Biskup CS, Sánchez CL, Arrant A et al (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS One 7:e35916. doi:10.1371/journal.pone.0035916
CAS
PubMed Central
PubMed
Article
Google Scholar
Bongiovanni R, Newbould E, Jaskiw GE (2008) Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels. Brain Res 1190:39–48. doi:10.1016/j.brainres.2007.10.079
CAS
PubMed
Article
Google Scholar
Bongiovanni R, Kyser AN, Jaskiw GE (2012) Tyrosine depletion lowers in vivo DOPA synthesis in ventral hippocampus. Eur J Pharmacol 696:70–76. doi:10.1016/j.ejphar.2012.09.014
CAS
PubMed
Article
Google Scholar
Brand T, Anderson GM (2011) The measurement of platelet-poor plasma serotonin: a systematic review of prior reports and recommendations for improved analysis. Clin Chem 57:1376–1386. doi:10.1373/clinchem.2011.163824
CAS
PubMed
Article
Google Scholar
Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286. doi:10.1152/physrev.00018.2006
PubMed
Article
Google Scholar
Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 303:157–164
CAS
Article
Google Scholar
Carpenter LL, Anderson GM, Pelton GH et al (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35. doi:10.1016/S0893-133X(97)00198-X
CAS
PubMed
Article
Google Scholar
Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77
CAS
PubMed
Google Scholar
Del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of l-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci Off J Eur Fed Pharm Sci 35:161–174. doi:10.1016/j.ejps.2008.06.015
Google Scholar
Delgado PL (2006) Monoamine depletion studies: implications for antidepressant discontinuation syndrome. J Clin Psychiatry 67:22–26
CAS
PubMed
Google Scholar
Dingerkus VLS, Gaber TJ, Helmbold K et al (2012) Acute tryptophan depletion in accordance with body weight: influx of amino acids across the blood–brain barrier. J Neural Transm 119:1037–1045. doi:10.1007/s00702-012-0793-z
CAS
PubMed Central
PubMed
Article
Google Scholar
During MJ, Acworth IN, Wurtman RJ (1988) Phenylalanine administration influences dopamine release in the rat’s corpus striatum. Neurosci Lett 93:91–95
CAS
PubMed
Article
Google Scholar
Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349. doi:10.1124/pr.56.3.1.mitters
CAS
PubMed
Article
Google Scholar
Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuro-psychopharmacol Biol Psychiatry Psychopharmacol Biol Psychiatry 28:435–451. doi:10.1016/j.pnpbp.2003.11.018
CAS
Article
Google Scholar
Fernstrom JD (1990) Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J Nutr Biochem 1:508–517
CAS
PubMed
Article
Google Scholar
Fernstrom JD (2012) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids. doi:10.1007/s00726-012-1330-y
PubMed
Google Scholar
Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137:1539S–1547S (discussion 1548S)
CAS
PubMed
Google Scholar
Gijsman HJ, Scarnà A, Harmer CJ et al (2002) A dose-finding study on the effects of branch chain amino acids on surrogate markers of brain dopamine function. Psychopharmacology 160:192–197. doi:10.1007/s00213-001-0970-5
CAS
PubMed
Article
Google Scholar
Harmer CJ, McTavish SFB, Clark L et al (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 154:105–111. doi:10.1007/s002130000613
CAS
PubMed
Article
Google Scholar
Hawkins RA, Kane RLO, Simpson IA, Vin JR (2006) Branched-chain amino acids: metabolism, physiological function, and application structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S
CAS
PubMed
Google Scholar
Jakeman PM (1998) Amino acid metabolism, branched-chain amino acid feeding and brain monoamine function. Proc Nutr Soc 57:35–41
CAS
PubMed
Article
Google Scholar
Jedlitschky G, Greinacher A, Kroemer HK (2012) Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood 119:3394–3402. doi:10.1182/blood-2011-09-336933
CAS
PubMed
Article
Google Scholar
Kötting WF, Bubenzer S, Helmbold K et al (2013) Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr Scand 128:114–123. doi:10.1111/acps.12001
PubMed
Article
Google Scholar
Lee M, Jayathilake K, Dai J, Meltzer HY (2011) Decreased plasma tryptophan and tryptophan/large neutral amino acid ratio in patients with neuroleptic-resistant schizophrenia: relationship to plasma cortisol concentration. Psychiatry Res 185:328–333. doi:10.1016/j.psychres.2010.07.013
CAS
PubMed
Article
Google Scholar
McTavish SF, Cowen PJ, Sharp T (1999) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 141:182–188
CAS
PubMed
Article
Google Scholar
Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system l heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21:580–589
CAS
PubMed
Article
Google Scholar
Moja EA, Stoff DM, Gessa GL et al (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42:1551–1556
CAS
PubMed
Article
Google Scholar
Moore P, Landolt HP, Seifritz E et al (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23:601–622. doi:10.1016/S0893-133X(00)00161-5
CAS
PubMed
Article
Google Scholar
Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917
CAS
PubMed
Google Scholar
Oldendorf WH, Szabo J (1976) Amino barrier acid assignment to one of three blood–brain amino acid carriers. Am J Physiol 230:94–98
CAS
PubMed
Google Scholar
Palmour RM, Ervin FR, Baker GB, Young SN (1998) An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology 136:1–7
CAS
PubMed
Article
Google Scholar
Pardridge WM (1998) Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635–644
CAS
PubMed
Article
Google Scholar
Porter RJ, Mulder RT, Joyce PR, Luty SE (2005) Tryptophan and tyrosine availability and response to antidepressant treatment in major depression. J Affect Disord 86:129–134. doi:10.1016/j.jad.2004.11.006
CAS
PubMed
Article
Google Scholar
Richard DM, Dawes MA, Mathias CW et al (2009) l-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res IJTR 2:45–60
CAS
Google Scholar
Scarnà A, Gijsman HJ, Harmer CJ et al (2002) Effect of branch chain amino acids supplemented with tryptophan on tyrosine availability and plasma prolactin. Psychopharmacology 159:222–223. doi:10.1007/s00213-001-0963-4
PubMed
Article
Google Scholar
Van Donkelaar EL, Blokland A, Lieben CKJ et al (2010) Acute tryptophan depletion in C57BL/6 mice does not induce central serotonin reduction or affective behavioural changes. Neurochem Int 56:21–34. doi:10.1016/j.neuint.2009.08.010
PubMed
Article
Google Scholar
Verrey F, Closs EI, Wagner CA et al (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflügers Arch Eur J Physiol 447:532–542. doi:10.1007/s00424-003-1086-z
CAS
Article
Google Scholar
Wurtman RJ, Fernstrom JD (1976) Control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem Pharmacol 25:1691–1696
CAS
PubMed
Article
Google Scholar
Wurtman RJ, Larin F, Mostafapour S et al (1974) Brain catechol synthesis: control by brain tyrosine concentration. Science 185:183–184
CAS
PubMed
Article
Google Scholar
Young SN, Ervin FR, Pihl RO, Finn P (1989) Biochemical aspects of tryptophan depletion in primates. Psychopharmacology 98:508–511
CAS
PubMed
Article
Google Scholar
Zepf FD, Stadler C, Demisch L et al (2008) Serotonergic functioning and trait-impulsivity in influence of rapid tryptophan depletion. Hum Psychopharmacol 23:43–51. doi:10.1002/hup
CAS
PubMed
Article
Google Scholar
Zepf FD, Holtmann M, Stadler C, Wockel L, Poustka F (2009) Reduced serotonergic functioning changes heart rate in ADHD. J Neural Transm 116(1):105–108. doi:10.1007/s00702-008-0146-0
Google Scholar
Zhang X, Beaulieu J-M, Sotnikova TD et al (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217. doi:10.1126/science.1097540
CAS
PubMed
Article
Google Scholar
Zimmermann M, Grabemann M, Mette C et al (2012) The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS One 7:e32023. doi:10.1371/journal.pone.0032023
CAS
PubMed Central
PubMed
Article
Google Scholar