Skip to main content

Advertisement

Log in

Biomarkers of cognitive dysfunction in traumatic brain injury

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Acetylcholine, glutamate, dopamine, serotonin (5-HT), gamma-aminobutyric acid, substance P (SP), amyloid-β (Aβ) and neurotrophic protein S100B are arguably the most important cognition-related biomarkers in the brain. Among this list are five neurotransmitters that signal through postsynaptic receptors. Our knowledge of cognition-related biomarkers has been advanced through translational experiments and clinical case-study data. Although these biomarkers are widespread in the brain and pronounced individual variations exist, these biomarkers can be used to identify both acute and chronic abnormalities following traumatic brain injury. Changes in these biomarkers likely indicate damage to brain networks or to key brain cell types that support cognitive functions. Identification of such biomarker abnormalities could result in earlier diagnoses, improved prognoses and therapies that enable neurotransmitters to return to normal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JJ, Chase TN, Engber TM (2011) Substance P increases release of acetylcholine in the dorsal striatum of freely moving rats. Brain Res 623:189–194

    Article  Google Scholar 

  • Arciniegas DB (2011) Cholinergic dysfunction and cognitive impairment after traumatic brain injury. Part 2: evidence from basic and clinical investigations. J Head Trauma Rehabil 26:319–323

    Article  PubMed  Google Scholar 

  • Arciniegas DB, Silver JM (2006) Pharmacotherapy of posttraumatic cognitive impairments. Behav Neurol 17:25–42

    PubMed  Google Scholar 

  • Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33:981–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Beglinger LJ, Gaydos BL, Kareken DA, Tangphao-Daniels O, Siemers ER, Mohs RC (2004) Neuropsychological test performance in healthy volunteers before and after donepezil administration. J Psychopharmacol 18:102–108

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovitch UJ, Bazarevitch GJ, Kirillov AL (1975) The use of cholinesterase in severe head injury. Resuscitation 4:139–141

    Article  CAS  PubMed  Google Scholar 

  • Celikyurt IK, Mutlu O, Ulak G, Akar FY, Erden FG (2011) Gabapentin: a GABA analogue, enhances cognitive performance in mice. Neurosci Lett 492:124–128

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH (2009) A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol 19:214–223

    Article  PubMed Central  PubMed  Google Scholar 

  • Chew E, Zafonte RD (2009) Pharmacological management of neurobehavioral disorders following traumatic brain injury—a state-of-the-art review. J Rehabil Res Dev 46:851–879

    Article  PubMed  Google Scholar 

  • Cifariello A, Pompili A, Gasbarri A (2008) 5-HT receptors in the modulation of cognitive processes. Behav Brain Res 195:171–179

    Article  CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  • Dardiotis E, Fountas KN, Dardioti M, Xiromerisiou G, Kapsalaki E, Tasiou A, Hadjigeorgiou GM (2010) Genetic association studies in patients with traumatic brain injury. Neurosurg Focus 28:E9

    Article  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeKosky ST, Abrahamson EE, Ciallella JR, Paljug WR, Wisniewski SR, Clark RS, Ikonomovic MD (2007) Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol 64:541–544

    Article  PubMed  Google Scholar 

  • Dixon CE, Bao J, Bergmann JS, Johnson KM (1994a) Traumatic brain injury reduces hippocampal high-affinity [3H] choline uptake but not extracellular choline levels in rats. Neurosci Lett 180:127–130

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Hamm RJ, Taft WC, Hayes RL (1994b) Increased anticholinergic sensitivity following closed skull impact and controlled cortical impact traumatic brain injury in the rat. J Neurotrauma 11:275–287

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Bao J, Johnson KM, Yang K, Whitson J, Clifton GL, Hayes RL (1995a) Basal and scopolamine-evoked release of hippocampal acetylcholine following traumatic brain injury in rats. Neurosci Lett 198:111–114

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Liu SJ, Jenkins LW, Bhattachargee M, Whitson JS, Yang K, Hayes RL (1995b) Time course of increased vulnerability of cholinergic neurotransmission following traumatic brain injury in the rat. Behav Brain Res 70:125–131

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Bao J, Long DA, Hayes RL (1996) Reduced evoked release of acetylcholine in the rodent hippocampus following traumatic brain injury. Pharmacol Biochem Behav 53:679–686

    Article  CAS  PubMed  Google Scholar 

  • Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 29:1388–1398

    Article  CAS  PubMed  Google Scholar 

  • Donkin JJ, Cernak I, Blumbergs PC, Vink R (2011) A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 hours after traumatic brain injury. J Neurotrauma 28:217–224

    Article  PubMed  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    Article  CAS  PubMed  Google Scholar 

  • Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA (2006) Performance deficit of alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav 5:433–440

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Jentsch JD (2011) Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 36:227–250

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Fossella JA (2011) Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology 36:133–152

    Article  PubMed  Google Scholar 

  • Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497–517

    Article  CAS  PubMed  Google Scholar 

  • Gauchy C, Desban M, Glowinski J, Kemel ML (1996) Distinct regulations by septide and the neurokinin-1 tachykinin receptor agonist [pro9] substance P of the N-methyl-D-aspartate-evoked release of dopamine in striosome- and matrix-enriched areas of the rat striatum. Neuroscience 73:929–939

    Article  CAS  PubMed  Google Scholar 

  • Gibson CJ, Meyer RC, Hamm RJ (2010) Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 17:38

    Article  PubMed  Google Scholar 

  • Gomez-Isla T, West HL, Rebeck GW, Harr SD, Growdon JH, Locascio JJ, Perls TT, Lipsitz LA, Hyman BT (1996) Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer’s disease. Ann Neurol 39:62–70

    Article  CAS  PubMed  Google Scholar 

  • Graham DI, Gentleman SM, Lynch A, Roberts GW (1995) Distribution of beta-amyloid protein in the brain following severe head injury. Neuropathol Appl Neurobiol 21:27–34

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA (1996) Serotonergic regulation of associative learning. Behav Brain Res 73:47–50

    Article  CAS  PubMed  Google Scholar 

  • Heizmann CW, Fritz G, Schäfer BW (2002) S100 proteins:structure, functions and pathology. Front Biosci 7:d1356–d1368

    Article  CAS  PubMed  Google Scholar 

  • Hornstein A, Lennihan L, Seliger G, Lichtman S, Schroeder K (1996) Amphetamine in recovery from brain injury. Brain Inj 10:145–148

    Article  CAS  PubMed  Google Scholar 

  • Horsburgh K, Fitzpatrick M, Nilsen M, Nicoll JA (1997) Marked alterations in the cellular localisation and levels of apolipoprotein E following acute subdural haematoma in rat. Brain Res 763:103–110

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  • Huston JP, Hasenöhrl RU (1995) The role of neuropeptides in learning: focus on the neurokinin substance P. Behav Brain Res 66:117–127

    Article  CAS  PubMed  Google Scholar 

  • Johansson IM, Birzniece V, Lindblad C, Olsson T, Bäckström T (2002) Allopregnanolone inhibits learning in the Morris water maze. Brain Res 934:125–131

    Article  CAS  PubMed  Google Scholar 

  • Kandimalla RJ, Wani WY, Anand R, Kaushal A, Prabhakar S, Grover VK, Bharadwaj N, Jain K, Gill KD (2013) Apolipoprotein e levels in the cerebrospinal fluid of north Indian patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 28:258–262

    Article  PubMed  Google Scholar 

  • Karaküçük EI, Paşaoğlu H, Paşaoğlu A, Oktem S (1997) Endogenous neuropeptides in patients with acute traumatic head injury II: changes in the levels of cerebrospinal fluid substance P, serotonin and lipid peroxidation products in patients with head trauma. Neuropeptides 31:259–263

    Article  PubMed  Google Scholar 

  • Kay AD, Petzold A, Kerr M, Keir G, Thompson E, Nicoll JA (2003a) Alterations in cerebrospinal fluid apolipoprotein E and amyloid beta-protein after traumatic brain injury. J Neurotrauma 20:943–952

    Article  PubMed  Google Scholar 

  • Kay AD, Petzold A, Kerr M, Keir G, Thompson EJ, Nicoll JA (2003b) Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury. J Neurotrauma 20:243–250

    Article  PubMed  Google Scholar 

  • Kleindienst A, Ross Bullock M (2006) A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma 23:1185–1200

    Article  PubMed  Google Scholar 

  • Kline AE, Yan HQ, Bao J, Marion DW, Dixon CE (2000) Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci Lett 280:163–166

    Article  CAS  PubMed  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Kraus MF, Maki P (1997) The combined use of amantadine and l-dopa/carbidopa in the treatment of chronic brain injury. Brain Inj 11:455–460

    Article  CAS  PubMed  Google Scholar 

  • Leonard JR, Maris DO, Grady MS (1994) Fluid percussion injury causes loss of forebrain choline acetyltransferase and nerve growth factor receptor immunoreactive cells in the rat. J Neurotrauma 11:379–392

    Article  CAS  PubMed  Google Scholar 

  • Lin RC (1995) Reactive astrocytes express substance-P immunoreactivity in the adult forebrain after injury. NeuroReport 7:310–312

    CAS  PubMed  Google Scholar 

  • Luo P, Fei F, Zhang L, Qu Y, Fei Z (2011) The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull 85:313–320

    Article  CAS  PubMed  Google Scholar 

  • Magnoni S, Brody DL (2010) New perspectives on amyloid-beta dynamics after acute brain injury: moving between experimental approaches and studies in the human brain. Arch Neurol 67:1068–1073

    Article  PubMed  Google Scholar 

  • Mahesh R, Pandey DK, Katiyar S, Kukade G, Viyogi S, Rudra A (2010) Effect of anti-depressants on neuro-behavioural consequences following impact accelerated traumatic brain injury in rats. Indian J Exp Biol 48:466–473

    CAS  PubMed  Google Scholar 

  • Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L (2009) Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 110:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Massucci JL, Kline AE, Ma X, Zafonte RD, Dixon CE (2004) Time dependent alterations in dopamine tissue levels and metabolism after experimental traumatic brain injury in rats. Neurosci Lett 372:127–131

    Article  CAS  PubMed  Google Scholar 

  • McAllister TW (2011) Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci 13:287–300

    PubMed Central  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    CAS  PubMed  Google Scholar 

  • Mello e Souza T, Rohden A, Meinhardt M, Gonçalves CA, Quillfeldt JA (2000) S100B infusion into the rat hippocampus facilitates memory for the inhibitory avoidance task but not for the open-field habituation. Physiol Behav 71:29–33

    Article  CAS  PubMed  Google Scholar 

  • Mohler H, Fritschy JM, Lüscher B, Rudolph U, Benson J, Benke D (1996) The GABAA receptors. From subunits to diverse functions. Ion Channels 4:89–113

    Article  CAS  PubMed  Google Scholar 

  • Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM (2010) Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 38:464–475

    Article  CAS  PubMed  Google Scholar 

  • NIH Consensus Development Panel on Rehabilitation of Persons with Traumatic Brain Injury (1999) Rehabilitation of persons with traumatic brain injury. JAMA 282:974–983

    Article  Google Scholar 

  • Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R, Lee H, Meeker M, Zimmerman RD, Manley GT, McCandliss BD (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973

    Article  CAS  PubMed  Google Scholar 

  • Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718

    Article  PubMed  Google Scholar 

  • O’Dowd BS, Zhao WQ, Ng KT, Robinson SR (1997) Chicks injected with antisera to either S-100 alpha or S-100 beta protein develop amnesia for a passive avoidance task. Neurobiol Learn Mem 67:197–206

    Article  PubMed  Google Scholar 

  • Olsen AS, Sozda CN, Cheng JP, Hoffman AN, Kline AE (2012) Traumatic brain injury-induced cognitive and histological deficits are attenuated by delayed and chronic treatment with the 5-HT-receptor agonist buspirone. J Neurotrauma 29:1898–1907

    Article  PubMed  Google Scholar 

  • Pappius HM (1989) Involvement of indoleamines in functional disturbances after brain injury. Prog Neuropsychopharmacol Biol Psychiatry 13:353–361

    Article  CAS  PubMed  Google Scholar 

  • Parker D, Zhang W, Grillner S (1998) Substance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network. J Neurosci 18:4800–4813

    CAS  PubMed  Google Scholar 

  • Phillips JP, Devier DJ, Feeney DM (2003) Rehabilitation pharmacology: bridging laboratory work to clinical application. J Head Trauma Rehabil 18:342–356

    Article  PubMed  Google Scholar 

  • Pocivavsek A, Icenogle L, Levin ED (2006) Ventral hippocampal alpha7 and alpha4beta2 nicotinic receptor blockade and clozapine effects on memory in female rats. Psychopharmacology 188:597–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raabe A, Seifert V (2000) Protein S-100B as a serum marker of brain damage in severe head injury: preliminary results. Neurosurg Rev 23:136–138

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Howells C, Eaton ED, Butler CW, Shabala L, Adlard PA, West AK, Bennett WR, Guillemin GJ, Chung RS (2011) Tg2576 cortical neurons that express human Ab are susceptible to extracellular Aβ-induced, K+ efflux dependent neurodegeneration. PLoS One 6:e19026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) beta A4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–1423

    Article  CAS  PubMed  Google Scholar 

  • Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Article  CAS  PubMed  Google Scholar 

  • Rowley NM, Madsen KK, Schousboe A, Steve WH (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61:546–558

    Article  CAS  PubMed  Google Scholar 

  • Sawyer E, Mauro LS, Ohlinger MJ (2008) Amantadine enhancement of arousal and cognition after traumatic brain injury. Ann Pharmacother 42:247–252

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Hernandez TD, Barth TM (1986) Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res 379:104–111

    Article  CAS  PubMed  Google Scholar 

  • Scremin OU, Li MG, Roch M, Booth R, Jenden DJ (2006) Acetylcholine and choline dynamics provide early and late markers of traumatic brain injury. Brain Res 1124:155–166

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • Shen KZ, North RA (1992) Substance P opens cation channels and closes potassium channels in rat locus coeruleus neurons. Neuroscience 50:345–353

    Article  CAS  PubMed  Google Scholar 

  • Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36:1376–1381

    Article  PubMed  Google Scholar 

  • Souza DG, Mendonça VA, de A Castro MS, Poole S, Teixeira MM (2002) Role of tachykinin NK receptors on the local and remote injuries following ischaemia and reperfusion of the superior mesenteric artery in the rat. Br J Pharmacol 11:303–312

    Article  Google Scholar 

  • Stelzer A, Shi H (1994) Impairment of GABAA receptor function by N-methyl-D-aspartate-mediated calcium influx in isolated CA1 pyramidal cells. Neuroscience 62:813–828

    Article  CAS  PubMed  Google Scholar 

  • Tenovuo O (2005) Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog Neuropsychopharmacol Biol Psychiatry 29:61–67

    Article  CAS  PubMed  Google Scholar 

  • Türkmen S, Löfgren M, Birzniece V, Bäckström T, Johansson IM (2006) Tolerance development to Morris water maze test impairments induced by acute allopregnanolone. Neuroscience 139:651–659

    Article  PubMed  Google Scholar 

  • van Holstein M, Aarts E, van der Schaaf ME, Geurts DE, Verkes RJ, Franke B, van Schouwenburg MR, Cools R (2011) Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology 218:567–578

    Article  PubMed Central  PubMed  Google Scholar 

  • Vink R, Nimmo AJ (2002) Novel therapies in development for the treatment of traumatic brain injury. Expert Opin Investig Drugs 11:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Vink R, Donkin JJ, Cruz MI, Nimmo AJ, Cernak I (2004) A substance P antagonist increases brain intracellular free magnesium concentration after diffuse traumatic brain injury in rats. J Am Coll Nutr 23:538S–540S

    Article  CAS  PubMed  Google Scholar 

  • Visser AK, van Waarde A, Willemsen AT, Bosker FJ, Luiten PG, den Boer JA, Kema IP, Dierckx RA (2011) Measuring serotonin synthesis: from conventional methods to PET tracers and their clinical implications. Eur J Nucl Med Mol Imaging 38:576–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner AK, Sokoloski JE, Ren D, Chen X, Khan AS, Zafonte RD, Michael AC, Dixon CE (2005) Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95:457–465

    Article  CAS  PubMed  Google Scholar 

  • Wagner AK, Sokoloski JE, Chen X, Harun R, Clossin DP, Khan AS, Andes-Koback M, Michael AC, Dixon CE (2009) Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission. J Neurochem 110:801–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakade C, Sukumari-Ramesh S, Laird MD, Dhandapani KM, Vender JR (2010) Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. J Neurosurg 113:1195–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winocur G, Roder J, Lobaugh N (2001) Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Mem 75:230–243

    Article  CAS  PubMed  Google Scholar 

  • Zainaghi IA, Forlenza OV, Gattaz WF (2007) Abnormal APP processing in platelets of patients with Alzheimer’s disease: correlations with membrane fluidity and cognitive decline. Psychopharmacology 192:547–553

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Hongmin B, Xiang Z, Enyu L (2003) Changes of mGluR4 and the effects of its specific agonist L-AP4 in a rodent model of diffuse brain injury. J Clin Neurosci 10:684–688

    Article  PubMed  Google Scholar 

  • Zhou W, Xu D, Peng X, Zhang Q, Jia J, Crutcher KA (2008) Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J Neurotrauma 25:279–290

    Article  PubMed  Google Scholar 

  • Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, Leibowitz A, Ohayon S, Regev A, Boyko M, Shapira Y, Teichberg VI (2012) Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 116:73–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Shanghai Committee of Science and Technology (No. 114119a8300), Shanghai Health Bureau (No. 2010167) and BaoShan Scientific and Technological Development Fund (11-E-1).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Fu Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZL., Feng, DF. Biomarkers of cognitive dysfunction in traumatic brain injury. J Neural Transm 121, 79–90 (2014). https://doi.org/10.1007/s00702-013-1078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1078-x

Keywords

Navigation