Skip to main content
Log in

Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Stress-related glucocorticoids and glutamate release has been implicated in depression. Glutamate neurotoxicity is mediated, in part, by the production of nitric oxide via nitric oxide synthase (NOS) isoforms and mitochondrial damage. We previously reported that chronic social isolation stress triggers proapoptotic signaling in the rat prefrontal cortex, but not in the hippocampus. Given that the hippocampus is highly sensitive to stress, we examined signaling cascades underlying the hippocampal cellular protection through the NOS pathway, antioxidant capacity and heat shock protein (Hsp) expression. We investigated neuronal (nNOS) and inducible (iNOS) protein levels, subcellular protein distributions of nuclear factor-κB (NF-κB), CuZnSOD and MnSOD activity, reduced glutathione (GSH), stress-inducible Hsp70 (Hsp70i) protein expression and serum corticosterone (CORT) levels of rats exposed to 21 days of chronic social isolation, an animal model of depression, alone or in combination with 2 h of acute immobilization or cold stress (combined stress). Both acute stressors elevated CORT, with lesser magnitude increase in chronically isolated rats exposed to novel acute stress as compared to acute stressors alone, indicating compromised HPA axis activity. Acute cold decreased nuclear CuZnSOD activity and stimulated NF-κB nuclear translocation. Chronic social isolation resulted in no activation of NF-κB, but led to decreased GSH, iNOS and increased nNOS and Hsp70i levels, alterations that remained following combined stressors. Decreased mitochondrial MnSOD activity after combined stressors suggests compromised detoxifying capacity. These data indicate that Hsp70i upregulation may provide hippocampal cellular protection against chronic social isolation stress mediated by downregulation of iNOS protein expression through suppression of NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad A, Rasheed N, Banu N, Palit G (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13(4):355–364. doi:10.3109/10253891003667862

    PubMed  Google Scholar 

  • Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29:525–546. doi:10.1016/j.neubiorev.2005.03.007

    PubMed  Google Scholar 

  • Arieli Y, Eynan M, Gancz H, Arieli R, Kashi Y (2003) Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72. Brain Res 962(1–2):15–20. doi:10.1016/S0006-8993(02)03681-8

    CAS  PubMed  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683. doi:10.1146/annurev.immunol.14.1.649

    CAS  PubMed  Google Scholar 

  • Belay HT, Brown IR (2003) Spatial analysis of cell death and Hsp70 induction in brain, thymus, and bone marrow of the hyperthermic rat. Cell Stress Chaperones 8(4):395–404. doi:10.1379/1466-1268(2003)008<0395:SAOCDA>2.0.CO;2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellia F, Calabrese V, Guarino F, Cavallaro M, Cornelius C, De Pinto V, Rizzarelli E (2009) Carnosinase levels in aging brain: redox state induction and cellular stress response. Antioxid Redox Signal 11(11):2759–2775. doi:10.1089/ARS.2009.2738

    CAS  PubMed  Google Scholar 

  • Blagojevic DP, Grubor-Lajsic GN, Spasic MB (2011) Cold defence responses: the role of oxidative stress. Front Biosci (Schol Ed) 3:416–427

    Google Scholar 

  • Boissel JP, Schwarz PM, Förstermann U (1998) Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide 2(5):337–349. doi:10.1006/niox.1998.0189

    CAS  PubMed  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587(2):250–256. doi:10.1016/0006-8993(92)91004-X

    CAS  PubMed  Google Scholar 

  • Bravo C, Vargas-Suarez M, Rodriguez-Enriquez S, Loza-Tavera H, Moreno-Sanchez R (2001) Metabolic changes induced by cold stress in rat liver mitochondria. J Bioenerg Biomembr 33:289–301. doi:10.1023/A:1010655223028

    CAS  PubMed  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35(5):1119–1121. doi:10.1007/s12035-010-8105-9

    CAS  PubMed  Google Scholar 

  • Calabrese V, Copani A, Testa D, Ravagna A, Spadaro F, Tendi E, Nicoletti VG, Giuffrida Stella AM (2000) Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res 60:613–622. doi:10.1002/(SICI)1097-4547(20000601)60:5<613:AID-JNR6>3.0.CO;2-8

    CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775. doi:10.1038/nrn2214

    CAS  PubMed  Google Scholar 

  • Carnevali L, Mastorci F, Graiani G, Razzoli M, Trombini M, Pico-Alfonso MA, Arban R, Grippo AJ, Quaini F, Sgoifo A (2012) Social defeat and isolation induce clear signs of a depression-like state, but modest cardiac alterations in wild-type rats. Physiol Behav 106:142–150. doi:10.1016/j.physbeh.2012.01.022

    CAS  PubMed  Google Scholar 

  • Cassina P, Peluffo H, Pehar M, Martinez-Palma L, Ressia A, Beckman J, Estévez AG, Barbeito L (2002) Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res 67:21–29. doi:10.1002/jnr.10107

    CAS  PubMed  Google Scholar 

  • Chiou WF, Chen CF, Lin JJ (2000) Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br J Pharmacol 129(8):1553–1560. doi:10.1038/sj.bjp.0703191

    CAS  PubMed  Google Scholar 

  • De Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. doi:10.1038/nrn1683

    PubMed  Google Scholar 

  • De Oliveira RMW, Guimarães FS, Deakin JFW (2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 41(4):333–341. doi:10.1590/S0100-879X2008000400012

    CAS  PubMed  Google Scholar 

  • De Vry J, Schreiber R (1997) The chronic mild stress depression model: future developments from a drug discovery perspective. Psychopharmacology 134:349–350. doi:10.1007/s002130050464

    PubMed  Google Scholar 

  • Dhir A, Kulkarni SK (2011) Nitric oxide and major depression. Nitric Oxide 24:125–131. doi:10.1016/j.niox.2011.02.002

    CAS  PubMed  Google Scholar 

  • Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C (2006) Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 26:171–198. doi:10.1007/3-540-29717-0_8

    Google Scholar 

  • Dronjak S, Gavrilović L, Filipović D, Radojčić MB (2004) Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary–adrenocortical axis of rats exposed to long-term isolation and crowding. Physiol Behav 81(3):409–415. doi:10.1016/j.physbeh.2004.01.011

    CAS  PubMed  Google Scholar 

  • Dronjak S, Spasojević N, Lj Gavrilović, Varagić V (2007) Behavioural and endocrine responses of socially isolated rats to long-term diazepam treatment. Acta veterinaria 57(4):291–302. doi:10.2298/AVB0704291D

    Google Scholar 

  • Esch T, Stefano GB, Fricchione GL, Benson H (2002) The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett 23:199–208

    PubMed  Google Scholar 

  • Filipović D, Pajović SB (2009) Differential regulation of CuZnSOD expression in rat brain by acute and/or chronic stress. Cell Mol Neurobiol 29:673–681. doi:10.1007/s10571-009-9375-5

    PubMed  Google Scholar 

  • Filipović D, Lj Gavrilović, Dronjak S, Radojčić BM (2005) Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress. Neuropsychobiology 51:107–114. doi:10.1159/000084168

    PubMed  Google Scholar 

  • Filipović D, Zlatković J, Pajović SB (2009) The effect of acute or/and chronic stress on the MnSOD protein expression in rat prefrontal cortex and hippocampus. Gen Physiol Biophys 28:53–61

    PubMed  Google Scholar 

  • Filipović D, Zlatković J, Inta D, Bjelobaba I, Stojiljkovic M, Gass P (2011) Chronic isolation stress predisposes the frontal cortex but not the hippocampus to the potentially detrimental release of cytochrome c from mitochondria and the activation of caspase-3. J Neurosci Res 89(9):1461–1470. doi:10.1002/jnr.22687

    PubMed  Google Scholar 

  • Filipović D, Zlatković J, Pavićević I, Mandić L, Demajo M (2012) Chronic isolation stress compromises JNK/c-Jun signaling in rat brain. J Neural Transm 119(11):1275–1284. doi:10.1007/s00702-012-0776-0

    PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    CAS  PubMed  Google Scholar 

  • Fuchs E, Flügge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8(3):323–333

    PubMed Central  PubMed  Google Scholar 

  • Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1:243–255

    CAS  PubMed  Google Scholar 

  • Fukuhara K, Kvetnansky R, Weise VK, Ohara H, Yoneda R, Goldstein DS, Kopin IJ (1996) Effects of continuous and intermittent cold (SART) stress on sympathoadrenal system activity in rats. J Neuroendocrinol 8:65–72

    CAS  PubMed  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438(1–2):1–4. doi:10.1016/S0014-5793(98)01242-3

    CAS  PubMed  Google Scholar 

  • Gamallo A, Villanua A, Trancho G, Fraile A (1986) Stress adaptation and adrenal activity in isolated and crowded rats. Physiol Behav 36:217–221. doi:10.1016/0031-9384(86)90006-5

    CAS  PubMed  Google Scholar 

  • Garzón J, del Rio J (1981) Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. Eur J Pharmacol 74:287–294. doi:10.1016/0014-2999(81)90047-9

    PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634. doi:10.1146/annurev.cb.09.110193.003125

    CAS  PubMed  Google Scholar 

  • Grippo AJ, Cushing BS, Sue Carter C (2007) Depression-like behavior and stressor-induced neuroendocrine activation in female prairie voles exposed to chronic social isolation. Psychosom Med 69(2):149–157. doi:10.1097/PSY.0b013e31802f054b

    PubMed Central  PubMed  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Muñoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76(2):126–152. doi:10.1016/j.pneurobio.2005.06.001

    CAS  PubMed  Google Scholar 

  • Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 12:129–162. doi:10.1615/CritRevNeurobiol.v12.i1-2.50

    CAS  PubMed  Google Scholar 

  • Hall AV, Antoniou H, Wang Y, Cheung AH, Arbus AM, Olson SL, Lu WC, Kau CL, Marsden PA (1994) Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem 269:33082–33090

    CAS  PubMed  Google Scholar 

  • Hao W, Myhre AP, Palmer JP (1999) Nitric oxide mediates IL-1beta stimulation of heat shock protein but not IL-1beta inhibition of glutamic acid decarboxylase. Autoimmunity 29:93–101

    CAS  PubMed  Google Scholar 

  • Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacol Rev 37:137–162. doi:10.1038/npp.2011.205

    CAS  Google Scholar 

  • Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039. doi:10.1016/S0006-3223(01)01157-X

    CAS  PubMed  Google Scholar 

  • Heinrich LM, Gullone E (2006) The clinical significance of loneliness: a literature review. Clin Psychol Rev 26:695–718. doi:10.1016/j.cpr.2006.04.002

    PubMed  Google Scholar 

  • Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL (2000) The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20(5):800–811

    CAS  PubMed  Google Scholar 

  • Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22(6):1442–1454. doi:10.1093/cercor/bhr229

    CAS  PubMed  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for the determination of oxidized and reduced glutathione in tissue. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    CAS  PubMed  Google Scholar 

  • Holson RR, Scallet AC, Turner BB (1991) Isolation stress revisited: isolation-rearing effects depend on animal care methods. Physiol Behav 49:1107–1118. doi:10.1016/0031-9384(91)90338-O

    CAS  PubMed  Google Scholar 

  • Hopper RK, Carroll S, Thor Johnson D, Aponte AM, French S, Shen RF, Witzmann FA, Harris RA, Balaban RS (2006) Mitochondrial Matrix Phosphoproteome: Effect of Extra Mitochondrial Calcium. Biochemistry 45:2524–2536. doi:10.1021/bi052475e

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang B, Liang P, Deng G, Tu Z, Liu M, Xiao X (2011) Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress Chaperon 16(2):143–152. doi:10.1007/s12192-010-0226-6

    CAS  Google Scholar 

  • Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS (2005) MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 288:2986–2994. doi:10.1152/ajpheart.01144.2004

    Google Scholar 

  • Kasckow JW, Baker D, Geracioti TD Jr (2001) Cortico-tropin-releasing hormone in depression and post-traumatic stress disorder. Peptides 22(5):845–851. doi:10.1016/S0196-9781(01)00399-0

    CAS  PubMed  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK (2002) Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52(2):160–167. doi:10.1002/ana.10264

    CAS  PubMed  Google Scholar 

  • Khaldi A, Chiueh CC, Bullock MR, Woodward JJ (2002) The significance of nitric oxide production in the brain after injury. Ann NY Acad Sci 962:53–59. doi:10.1111/j.1749-6632.2002.tb04055.x

    CAS  PubMed  Google Scholar 

  • Kiang JG (2004) Inducible heat shock protein 70 kD and inducible nitric oxide synthase in hemorrhage/resuscitation-induced injury. Cell Res 14(6):450–459. doi:10.1038/sj.cr.7290247

    CAS  PubMed  Google Scholar 

  • Kumar Y, Tatu U (2003) Stress protein flux during recovery from simulated ischemia: induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3(4):513–526. doi:10.1002/pmic.200390065

    CAS  PubMed  Google Scholar 

  • Kvetnansky R, Mikulaj L (1970) Adrenal and urinary catecholamines in rat during adaptation to repeated immobilization stress. Endocrinology 87:738–743. doi:10.1210/endo-87-4-738

    CAS  PubMed  Google Scholar 

  • Kvetnansky R, Pacak K, Sabban EL, Kopin IJ, Goldstein DS (1998) Stressor specificity of peripheral catecholaminergic activation. Adv Pharmacol 42:556–560. doi:10.1016/S1054-3589(08)60811-X

    CAS  PubMed  Google Scholar 

  • Lee S, Jeong J, Kwak Y, Park SK (2010) Depression research: where are we now? Mol Brain 3:8. doi:10.1186/1756-6606-3-8

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Li G, Li C, Zhao Y (2007) Identification of nuclear factor-kappaB responsive element within the neuronal nitric oxide synthase exon 1f-specific promoter. Acta Biochim Biophys Sin (Shanghai) 39(4):247–254. doi:10.1111/j.1745-7270.2007.00280.x

    CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677. doi:10.1146/annurev.ge.22.120188.003215

    CAS  PubMed  Google Scholar 

  • Liu J, Mori A (1994) Involvement of reactive oxygen species in emotional stress: a hypothesis based on the immobilization stress-induced oxidative damage and antioxidant defense changes in rat brain, and the effect of antioxidant treatment with reduced glutathione. Int J Stress Manage 1(3):249–263. doi:10.1007/BF01857992

    Google Scholar 

  • Liu YH, Liu AH, Xu Y, Tie L, Yu HM, Li YJ (2005) Effect of chronic unpredictable mild stress on brain–pancreas relative protein in rat brain and pancreas. Behav Brain Res 165:63–71. doi:10.1016/j.bbr.2005.06.034

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AJ, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001a) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24(4):420–429. doi:10.1016/S0893-133X(00)00208-6

    CAS  PubMed  Google Scholar 

  • Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Bosca L, Leza JC (2001b) Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 76:532–538. doi:10.1046/j.1471-4159.2001.00108.x

    CAS  PubMed  Google Scholar 

  • Madrigal JL, Garcia-Bueno B, Caso JR, Perez-Nievas BG, Leza JC (2006) Stress-induced oxidative changes in brain. CNS Neurol Disord: Drug Targets 5:561–568. doi:10.2174/187152706778559327

    Google Scholar 

  • Malhotra V, Wong HR (2002) Interactions between the heat shock response and the nuclear factor-kappaB signaling pathway. Crit Care Med 30:S89–S95

    CAS  Google Scholar 

  • Malkesman O, Maayan R, Weizman A, Weller A (2006) Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behav Brain Res 175:408–414. doi:10.1016/j.bbr.2006.09.017

    CAS  PubMed  Google Scholar 

  • Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16(10):577–586. doi:10.1016/j.jnutbio.2005.05.013

    CAS  PubMed  Google Scholar 

  • McLeod TM, López-Figueroa AL, López-Figueroa MO (2001) Nitric oxide, stress, and depression. Psychopharmacol Bull 35:24–41

    CAS  PubMed  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12(5):2005–2015

    CAS  PubMed  Google Scholar 

  • Mihm S, Galter D, Droge W (1995) Modulation of transcription factor NFκB activity by intracellular glutathione levels and by variations of the extracellular cysteine supply. FASEB J 9:246–252

    PubMed  Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefontal cortex: comparison to hippocampus and basal ganglia. J Neurchem 60:1650–1657. doi:10.1111/j.1471-4159.1993.tb13387.x

    CAS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1994) The Biology of the Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Moutsatsou P, Psarra AMG, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE (2001) Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 386:69–78. doi:10.1006/abbi.2000.2162

    CAS  PubMed  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relationship to pharmacological actions. Endocr Rev 5:25–44. doi:10.1210/edrv-5-1-25

    CAS  PubMed  Google Scholar 

  • Munhoz CD, García-Bueno B, Madrigal JLM, Lepsch LB, Scavone C, Leza JC (2008) Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 41(12):1037–1046. doi:10.1590/S0100-879X2008001200001

    CAS  PubMed  Google Scholar 

  • Musazzi L, Racagni G, Popoli M (2011) Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem Int 59:138–149. doi:10.1016/j.neuint.2011.05.002

    CAS  PubMed  Google Scholar 

  • Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74(2):785–791. doi:10.1046/j.1471-4159.2000.740785.x

    CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22(4):502–548. doi:10.1210/er.22.4.502

    CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Yadid G, Kvetnansky R, Kopin I, Goldstein D (1998) Heterogeneous neurochemical responses to different stressors: a test of Selye’s doctrine of nonspecificity. Am J Physiol Regul Integr Comp Physiol 275:R1247–R1255

    CAS  Google Scholar 

  • Pajović SB, Pejić S, Stojiljković V, Gavrilović L, Dronjak S, Kanazir D (2006) Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiol Res 55(4):453–460

    PubMed  Google Scholar 

  • Pal SN, Dandiya PC (1994) Glutathione as a cerebral substrate in depressive behavior. Pharmacol Biochem Behav 48(4):845–851. doi:10.1016/0091-3057(94)90191-0

    CAS  PubMed  Google Scholar 

  • Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary M, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51:283–297. doi:10.1016/0047-6374(90)90078-T

    CAS  PubMed  Google Scholar 

  • Rao U, Chen LA, Bidesi AS, Shad MU, Thomas MA, Hammen CL (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67(4):357–364. doi:10.1016/j.biopsych.2009.10.017

    PubMed Central  PubMed  Google Scholar 

  • Rauhala P, Lin AMY, Chiueh C (1998) Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J 12:165–173

    CAS  PubMed  Google Scholar 

  • Sanchez MM, Aguado F, Sanchez-Toscano F, Saphier D (1998) Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary–adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology 139:579–587. doi:10.1210/en.139.2.579

    CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935. doi:10.1001/archpsyc.57.10.925

    CAS  PubMed  Google Scholar 

  • Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Rad Res Commun 17:221–237

    CAS  Google Scholar 

  • Scott LV, Dinan TG (1998) Vasopressin and the regulation of hypothalamic–pituitary–adrenal axis function: implications for the pathophysiology of depression. Life Sci 62:1985–1998. doi:10.1016/S0024-3205(98)00027-7

    CAS  PubMed  Google Scholar 

  • Selman C, McLaren JS, Himankaa MJ, Speakmana JR (2000) Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radical Bio Med 28(8):1279–1285. doi:10.1016/S0891-5849(00)00263-X

    CAS  Google Scholar 

  • Serra M, Sanna E, Mostallino MC, Biggio G (2007) Social isolation stress and neuroactive steroids. Eur Neuropsychopharmacol 17(1):1–11. doi:10.1016/j.euroneuro.2006.03.004

    CAS  PubMed  Google Scholar 

  • Simeon D, Knutelska M, Yehuda R, Putnam F, Schmeidler J, Smith LM (2007) Hypothalamic–pituitary–adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers. Biol Psychiatry 61(8):966–973. doi:10.1016/j.biopsych.2006.07.030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slot JW, Geuze HJ, Freeman BA, Crapo JD (1986) Intracellular localization of the cooper–zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Invest 55:363–371

    CAS  PubMed  Google Scholar 

  • Spasojević N, Gavrilović LJ, Varagić V, Dronjak S (2007) Effects of chronic diazepam treatments on behavior on individually housed rats. Arch Biol Sci 59:113–117. doi:10.2298/ABS0702113S

    Google Scholar 

  • Spencer RL, Kalman BA, Cotter CS, Deak T (2000) Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Res 868:275–286. doi:10.1016/S0006-8993(00)02341-6

    CAS  PubMed  Google Scholar 

  • Stojiljković V, Todorović A, Kasapović J, Pejić S, Pajović SB (2005) Antioxidant enzyme activity in rat hippocampus after chronic and acute stress exposure. Ann NY Acad Sci 1048:373–376. doi:10.1196/annals.1342.042

    PubMed  Google Scholar 

  • Sugama S, Takenouchi T, Fujita M, Kitani H, Hashimoto M (2011) Cold stress induced morphological microglial activation and increased IL-1β expression in astroglial cells in rat brain. J Neuroimmunol 233(1–2):29–36. doi:10.1016/j.jneuroim.2010.11.002

    CAS  PubMed  Google Scholar 

  • Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24(7):1058–1068. doi:10.1016/j.bbi.2010.02.001

    CAS  PubMed  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110. doi:10.1159/000087097

    CAS  PubMed  Google Scholar 

  • Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269(7):4705–4708

    CAS  PubMed  Google Scholar 

  • Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089. doi:10.1074/jbc.273.23.14085

    CAS  PubMed  Google Scholar 

  • Yao S, Peng M, Zhu X, Cheng M, Qi X (2007) Heat shock protein72 protects hippocampal neurons from apoptosis induced by chronic psychological stress. Int J Neurosci 117(11):1551–1564. doi:10.1080/00207450701239285

    CAS  PubMed  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28(1):53–63. doi:10.1038/sj.jcbfm.9600502

    CAS  PubMed  Google Scholar 

  • Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103(5):1843–1854. doi:10.1111/j.1471-4159.2007.04914.x

    CAS  PubMed  Google Scholar 

  • Zlatković J, Filipović D (2012) Bax and Bcl-2 mediate proapoptotic signaling following chronic isolation stress in rat brain. Neuroscience 223:238–245. doi:10.1016/j.neuroscience.2012.08.005

    PubMed  Google Scholar 

  • Zlatković J, Filipović D (2013) Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochem Int 63:172–179. doi: 10.1016/j.neuint.2013.06.002

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia, Grant 173044.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Filipović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlatković, J., Bernardi, R.E. & Filipović, D. Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus. J Neural Transm 121, 3–14 (2014). https://doi.org/10.1007/s00702-013-1066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1066-1

Keywords

Navigation