Skip to main content

Advertisement

Log in

Melanin affinity and its possible role in neurodegeneration

  • Translational Neurosciences - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Certain drugs with melanin affinity are known to have caused pigmentary lesions in the eye and skin. This was the basis for the hypothesis that compounds with melanin affinity may cause damage also in other melanin-bearing tissues such as the substantia nigra. The heterogeneity of compounds that binds to melanin is large. Toxins, drugs, and several other compounds have melanin affinity. Compounds showing the highest affinity are mainly organic amines and metal ions. The binding of toxicants to melanin probably protects the cells initially. However, the binding is normally, slowly reversible and melanin may accumulate the toxicant and gradually release it into the cytosol. Several studies indicate that neuromelanin may play a significant role both in the initiation and in the progression of neurodegeneration. MPTP/MPP+ that has been causally linked with Parkinsonism has high affinity for neuromelanin, and the induced dopaminergic denervation correlates with the neuromelanin content in the cells. This shows that the toxicological implications of the accumulation of toxicants in pigmented neurons and its possible role in neurodegeneration should not be neglected. Extracellular neuromelanin has been reported to activate dendritic cells and microglia. An initial neuronal damage induced by a neurotoxicant that leaks neuromelanin from the cells may therefore lead to a vicious cycle of neuroinflammation and further neurodegeneration. Although there are many clues to the particular vulnerability of dopaminergic neurons of substantia nigra in Parkinson’s disease, the critical factors are not known. Further studies to determine the importance of neuromelanin in neurodegeneration and Parkinson’s disease are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aubry AF (2002) Applications of affinity chromatography to the study of drug-melanin binding interactions. J Chromatogr B Analyt Technol Biomed Life Sci 768(1):67–74

    PubMed  CAS  Google Scholar 

  • Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61(3):387–389

    PubMed  CAS  Google Scholar 

  • Barden H, Levine S (1983) Histochemical observations on rodent brain melanin. Brain Res Bull 10(6):847–851

    PubMed  CAS  Google Scholar 

  • Bertoni JM, Arlette JP, Fernandez HH, Fitzer-Attas C, Frei K, Hassan MN, Isaacson SH, Lew MF, Molho E, Ondo WG, Phillips TJ, Singer C, Sutton JP, Wolf JE Jr (2010) Increased melanoma risk in Parkinson disease: a prospective clinicopathological study. Arch Neurol 67(3):347–352

    PubMed  Google Scholar 

  • Borenstein AR, Mortimer JA, Schellenberg GD, Galasko D (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72(5):473

    PubMed  Google Scholar 

  • Bradley WG, Banack SA, Cox PA (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72(5):473–474

    PubMed  Google Scholar 

  • Campbell RJ, Steele JC, Cox TA, Loerzel AJ, Belli M, Belli DD, Kurland LT (1993) Pathologic findings in the retinal pigment epitheliopathy associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Ophthalmology 100(1):37–42

    PubMed  CAS  Google Scholar 

  • Claffey DJ, Ruth JA (2001) Amphetamine adducts of melanin intermediates demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Res Toxicol 14(9):1339–1344

    PubMed  CAS  Google Scholar 

  • Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L (2006) Genes and the environment in neurodegeneration. Biosci Rep 26(5):341–367

    PubMed  Google Scholar 

  • Cox TA, McDarby JV, Lavine L, Steele JC, Calne DB (1989) A retinopathy on Guam with high prevalence in Lytico-Bodig. Ophthalmology 96(12):1731–1735

    PubMed  CAS  Google Scholar 

  • Cruz-Aguado R, Shaw CA (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72(5):474

    PubMed  Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231(4741):987–989

    PubMed  Google Scholar 

  • D’Amato RJ, Alexander GM, Schwartzman RJ, Kitt CA, Price DL, Snyder SH (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327(6120):324–326

    PubMed  Google Scholar 

  • Dayhaw-Barker P (2002) Retinal pigment epithelium melanin and ocular toxicity. Int J Toxicol 21(6):451–454

    PubMed  CAS  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    PubMed  Google Scholar 

  • Dencker L, Lindquist NG (1975) Distribution of labeled chloroquine in the inner ear. Arch Otolaryngol 101(3):185–188

    PubMed  CAS  Google Scholar 

  • Dencker L, Lindquist NG, Ullberg S (1975) Distribution of an 125I-labelled chloroquine analogue in a pregnant macaca monkey. Toxicology 5(2):255–265

    PubMed  CAS  Google Scholar 

  • Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66(3):489–494

    PubMed  CAS  Google Scholar 

  • Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DK, Blackie J, Corbett A, Joffe R, Fung VS, Morris J, Riederer P, Gerlach M, Halliday GM (2009) Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 217(2):297–301

    PubMed  CAS  Google Scholar 

  • Duffy P, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia Nigra and locus Caeruleus in Parkinson’s Disease. J Neuropathol Exp Neurol 24(3):398–414

    Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86(5):1142–1148

    PubMed  CAS  Google Scholar 

  • Fedorow H, Halliday GM, Rickert CH, Gerlach M, Riederer P, Double KL (2006) Evidence for specific phases in the development of human neuromelanin. Neurobiol Aging 27(3):506–512

    PubMed  CAS  Google Scholar 

  • Fenichel GM, Bazelon M (1968) Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology 18(8):817–820

    PubMed  CAS  Google Scholar 

  • Gao X, Simon KC, Han J, Schwarzschild MA, Ascherio A (2009) Family history of melanoma and Parkinson disease risk. Neurology 73(16):1286–1291

    PubMed  CAS  Google Scholar 

  • Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. Immunocytochemical localization and relationships. J Neurol Sci 58(2):247–267

    PubMed  CAS  Google Scholar 

  • Greggio E, Bergantino E, Carter D, Ahmad R, Costin GE, Hearing VJ, Clarimon J, Singleton A, Eerola J, Hellstrom O, Tienari PJ, Miller DW, Beilina A, Bubacco L, Cookson MR (2005) Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson’s disease. J Neurochem 93(1):246–256

    PubMed  CAS  Google Scholar 

  • Halliday GM, Ophof A, Broe M, Jensen PH, Kettle E, Fedorow H, Cartwright MI, Griffiths FM, Shepherd CE, Double KL (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain: J Neurol 128(Pt 11):2654–2664

    Google Scholar 

  • Halliday GM, Fedorow H, Rickert CH, Gerlach M, Riederer P, Double KL (2006) Evidence for specific phases in the development of human neuromelanin. J Neural Transm 113(6):721–728

    PubMed  CAS  Google Scholar 

  • Harrison WH, Gray RM, Solomon LM (1974) Incorporation of d-amphetamine into pigmented guinea-pig hair. Br J Dermatol 91(4):415–418

    PubMed  CAS  Google Scholar 

  • Herrero Hernandez E (2009) Pigmentation genes link Parkinson’s disease to melanoma, opening a window on both etiologies. Med Hypotheses 72(3):280–284

    PubMed  CAS  Google Scholar 

  • Herrero MT, Hirsch EC, Kastner A, Ruberg M, Luquin MR, Laguna J, Javoy-Agid F, Obeso JA, Agid Y (1993) Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience 56(2):499–511

    PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334(6180):345–348

    PubMed  CAS  Google Scholar 

  • Huang LZ, Parameswaran N, Bordia T, Michael McIntosh J, Quik M (2009) Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. J Neurochem 109(3):826–837

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Takahashi H (1998) Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 245 Suppl 3 (11):4–9

    Google Scholar 

  • Ito S (2003) A Chemist’s View of Melanogenesis. Pigment Cell Res 16(3):230–236

    PubMed  CAS  Google Scholar 

  • Ito S, Wakamatsu K (2008) Chemistry of mixed melanogenesis—pivotal roles of dopaquinone. Photochem Photobiol 84(3):582–592

    PubMed  CAS  Google Scholar 

  • Jellinger KA, Kienzl E, Rumpelmaier G, Paulus W, Riederer P, Stachelberger H, Youdim MB, Ben-Shachar D (1993) Iron and ferritin in substantia nigra in Parkinson’s disease. Adv Neurol 60:267–272

    PubMed  CAS  Google Scholar 

  • Jimbow K (1995) Current update and trends in melanin pigmentation and melanin biology. Keio J Med 44(1):9–18

    PubMed  CAS  Google Scholar 

  • Karlsson O, Berg C, Brittebo EB, Lindquist NG (2009) Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells–a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res 22(1):120–130

    PubMed  CAS  Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59(3):1080–1089

    PubMed  CAS  Google Scholar 

  • Kellner U, Kellner S, Weinitz S (2008) Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol 116(2):119–127

    PubMed  Google Scholar 

  • Kemali M, Gioffre D (1985) Anatomical localisation of neuromelanin in the brains of the frog and tadpole. Ultrastructural comparison of neuromelanin with other melanins. J Anat 142:73–83

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Shimohama S, Akaike A, Taniguchi T (2000) The parkinsonian models: invertebrates to mammals. Jpn J Pharmacol 84(3):237–243

    PubMed  CAS  Google Scholar 

  • Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96

    PubMed  CAS  Google Scholar 

  • Koutsilieri E, Lutz MB, Scheller C (2013) Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J Neural Transm 120(1):75–81

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    PubMed  CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605

    PubMed  CAS  Google Scholar 

  • Larsson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6(3):127–133

    PubMed  CAS  Google Scholar 

  • Larsson B, Tjalve H (1979) Studies on the mechanism of drug-binding to melanin. Biochem Pharmacol 28(7):1181–1187

    PubMed  CAS  Google Scholar 

  • Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, Liu D, Zhang B (2012) Neuromelanin enhances the toxicity of alpha-synuclein in SK-N-SH cells. J Neural Transm 119(6):685–691

    PubMed  CAS  Google Scholar 

  • Lindquist NG (1972) Accumulation in vitro of 35 S-chlorpromazine in the neuromelanin of human substantia nigra and locus coeruleus. Arch Int Pharmacodyn Ther 200(1):190–195

    PubMed  CAS  Google Scholar 

  • Lindquist NG (1973) Accumulation of drugs on melanin. Acta Radiol Diagn (Stockh) 325:1–92

    CAS  Google Scholar 

  • Lindquist NG, Ullberg S (1972) The melanin affinity of chloroquine and chlorpromazine studied by whole body autoradiography. Acta Pharmacologica et Toxicologica 2(Suppl 2):1–32

    PubMed  Google Scholar 

  • Lindquist NG, Lyden-Sokolowski A, Larsson BS (1986) Accumulation of a parkinsonism-inducing neurotoxin in melanin-bearing neurons: autoradiographic studies on 3H-MPTP. Acta Pharmacologica et Toxicologica 59(2):161–164

    PubMed  CAS  Google Scholar 

  • Lindquist NG, Larsson BS, Lyden-Sokolowski A (1987) Neuromelanin and its possible protective and destructive properties. Pigment Cell Res 1(3):133–136

    PubMed  CAS  Google Scholar 

  • Lindquist NG, Larsson BS, Lyden-Sokolowski A (1988) Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 93(1):1–6

    PubMed  CAS  Google Scholar 

  • Liu R, Gao X, Lu Y, Chen H (2011) Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 76(23):2002–2009

    PubMed  Google Scholar 

  • Lyden A, Larsson B, Lindquist NG (1982) Studies on the melanin affinity of haloperidol. Arch Int Pharmacodyn Ther 259(2):230–243

    PubMed  CAS  Google Scholar 

  • Lyden A, Bondesson U, Larsson BS, Lindquist NG (1983) Melanin affinity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, an inducer of chronic parkinsonism in humans. Acta Pharmacol Toxicol (Copenh) 53(5):429–432

    CAS  Google Scholar 

  • Ma QL, Chan P, Yoshii M, Ueda K (2003) Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimer’s Dis (JAD) 5(2):139–148

    CAS  Google Scholar 

  • Mars U, Larsson BS (1999) Pheomelanin as a binding site for drugs and chemicals. Pigment Cell Res 12(4):266–274

    PubMed  CAS  Google Scholar 

  • Marsden CD (1961) Pigmentation in the nucleus substantiae nigrae of mammals. J Anat 95:256–261

    PubMed  CAS  Google Scholar 

  • Marszall MP, Bucinski A, Gorynski K, Proszowska A, Kaliszan R (2011) Magnetic beads method for determination of binding of drugs to melanin. J Chromatogr A 1218(2):229–236

    PubMed  CAS  Google Scholar 

  • McCormack AL, Di Monte DA, Delfani K, Irwin I, DeLanney LE, Langston WJ, Janson AM (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471(4):387–395

    PubMed  Google Scholar 

  • Oberlander U, Pletinckx K, Dohler A, Muller N, Lutz MB, Arzberger T, Riederer P, Gerlach M, Koutsilieri E, Scheller C (2011) Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci 12:116

    PubMed  Google Scholar 

  • Ostergren A, Annas A, Skog K, Lindquist NG, Brittebo EB (2004) Long-term retention of neurotoxic beta-carbolines in brain neuromelanin. J Neural Transm 111(2):141–157

    PubMed  CAS  Google Scholar 

  • Palumbo A, Mars U, De Martino L, d’Ischia M, Napolitano A, Larsson BS, Prota G (1997) Selective incorporation of the prototype melanoma seeker thiourea into nascent melanin: a chemical insight. Melanoma Res 7(6):478–485

    PubMed  CAS  Google Scholar 

  • Pan T, Zhu J, Hwu WJ, Jankovic J (2012) The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS ONE 7(9):e45183

    PubMed  CAS  Google Scholar 

  • Plato CC, Galasko D, Garruto RM, Plato M, Gamst A, Craig UK, Torres JM, Wiederholt W (2002) ALS and PDC of Guam. Neurology 58(5):765–773

    PubMed  CAS  Google Scholar 

  • Plato CC, Garruto RM, Galasko D, Craig U-K, Plato M, Gamst A, Torres JM, Wiederholt W (2003) Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam: changing incidence rates during the past 60 years. Am J Epidemiol 157(2):149–157

    PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    PubMed  CAS  Google Scholar 

  • Potts AM (1962a) The concentration of phenothiazines in the eye of experimental animals. Invest Ophthalmol 1:522–530

    PubMed  CAS  Google Scholar 

  • Potts AM (1962b) Uveal pigment and phenothiazine compounds. Trans Am Ophthalmol Soc 60:517–552

    PubMed  CAS  Google Scholar 

  • Potts AM (1964a) Further studies concerning the accumulation of polycyclic compounds on uveal melanin. Invest Ophthalmol 3:399–404

    PubMed  CAS  Google Scholar 

  • Potts AM (1964b) The reaction of uveal pigment in vitro with polycyclic compounds. Invest Ophthalmol 3:405–416

    PubMed  CAS  Google Scholar 

  • Prota G (1992) Melanins and melanogenesis. Academic Press, Inc., San Diego

    Google Scholar 

  • Reed DM, Torres JM, Brody JA (1975) Amyotrophic lateral sclerosis and parkinsonism-dementia on Guam 1945–1972. Am J Epidemiol 101(4):302–310

    PubMed  CAS  Google Scholar 

  • Reed D, Labarthe D, Chen KM, Stallones R (1987) A cohort study of amyotrophic lateral sclerosis and parkinsonism-dementia on Guam and Rota. Am J Epidemiol 125(1):92–100

    PubMed  CAS  Google Scholar 

  • Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, Gambhir SS, Cheng Z (2009) Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med 50(10):1692–1699

    PubMed  CAS  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (eds) (2006) Development of the nervous system, 2nd edn. Academic press Elsevier, Amsterdam

    Google Scholar 

  • Sarna T (1992) Properties and function of the ocular melanin–a photobiophysical view. J Photochem Photobiol, B 12(3):215–258

    CAS  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108(11):1263–1282

    PubMed  CAS  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Akao Y, Osawa T, Tribl F, Gerlach M, Zucca FA, Zecca L, Riederer P, Naoi M (2004) Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 111(10–11):1253–1265

    PubMed  CAS  Google Scholar 

  • Simon JD, Peles D, Wakamatsu K, Ito S (2009) Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 22(5):563–579

    PubMed  CAS  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237(4814):517–522

    PubMed  CAS  Google Scholar 

  • Spencer PS, Palmer V, Kisby G (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72(5):474–475

    PubMed  Google Scholar 

  • Steele JC, McGeer PL (2008) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70(21):1984–1990

    PubMed  Google Scholar 

  • Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97(22):11869–11874

    PubMed  CAS  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281(4):341–346

    PubMed  CAS  Google Scholar 

  • Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, Bressman S, Deligtisch A, Marras C, Lyons KE, Bhudhikanok GS, Roucoux DF, Meng C, Abbott RD, Langston JW (2009) Occupation and risk of parkinsonism: a multicenter case-control study. Arch Neurol 66(9):1106–1113

    PubMed  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16 Spec No. 2:R183–194

  • Tribl F, Arzberger T, Riederer P, Gerlach M (2007) Tyrosinase is not detected in human catecholaminergic neurons by immunohistochemistry and Western blot analysis. J Neural Transm Suppl 72:51–55

    PubMed  CAS  Google Scholar 

  • Tzekov R (2005) Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 110(1):111–120

    PubMed  Google Scholar 

  • Ullberg S, Lindquist NG, Sjostrand SE (1970) Accumulation of chorio-retinotoxic drugs in the foetal eye. Nature 227(5264):1257–1258

    PubMed  CAS  Google Scholar 

  • Wakamatsu K, Fujikawa K, Zucca FA, Zecca L, Ito S (2003) The structure of neuromelanin as studied by chemical degradative methods. J Neurochem 86(4):1015–1023

    PubMed  CAS  Google Scholar 

  • Wakamatsu K, Hu DN, McCormick SA, Ito S (2008) Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res 21(1):97–105

    PubMed  CAS  Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

    CAS  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. Faseb J 17(3):500–502

    PubMed  CAS  Google Scholar 

  • Wirdefeldt K, Gatz M, Bakaysa SL, Fiske A, Flensburg M, Petzinger GM, Widner H, Lew MF, Welsh M, Pedersen NL (2008) Complete ascertainment of Parkinson disease in the Swedish Twin Registry. Neurobiol Aging 29(12):1765–1773

    PubMed  Google Scholar 

  • Xuan Q, Xu SL, Lu DH, Yu S, Zhou M, Ueda K, Cui YQ, Zhang BY, Chan P (2011) Increased expression of alpha-synuclein in aged human brain associated with neuromelanin accumulation. J Neural Transm 118(11):1575–1583

    PubMed  CAS  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510(3):216–220

    PubMed  CAS  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26(11):578–580

    PubMed  CAS  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen J-H, Brandenburg L-O, Holzknecht C, Panizza M, Zucca F, Deuschl G, Sievers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116(1):47–55

    PubMed  CAS  Google Scholar 

  • Zhang W, Phillips K, Wielgus A, Liu J, Albertini A, Zucca F, Faust R, Qian S, Miller D, Chignell C, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong J-S, Sulzer D, Zecca L (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19(1):63–72

    Google Scholar 

  • Zhang W, Zecca L, Wilson B, Ren HW, Wang YJ, Wang XM, Hong JS (2013) Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death. Front Biosci (Elite Ed) 5:1–11

    CAS  Google Scholar 

  • Zhou W, Schaack J, Zawada WM, Freed CR (2002) Overexpression of human alpha-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res 926(1–2):42–50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, O., Lindquist, N.G. Melanin affinity and its possible role in neurodegeneration. J Neural Transm 120, 1623–1630 (2013). https://doi.org/10.1007/s00702-013-1062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1062-5

Keywords

Navigation