Skip to main content

Advertisement

Log in

Induced neural stem cells (iNSCs) in neurodegenerative diseases

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Recent advances in somatic cell reprogramming is one of the most important developments in neuroscience in the last decades since it offers for the first time the opportunity to work with disease/patient-specific neurons or other neural cell types. Induced pluripotent stem cells (iPSCs) can be differentiated into all cell types of the body enabling investigations not only on neurons but also on muscle or endothelial cells which are cell types often also of great interest in neurodegenerative diseases. The novel technology of direct lineage conversion of somatic cells into neurons (induced neurons; iNs) or into expandable multipotent neural stem cells (induced neural stem cells; iNSCs) provides interesting alternatives to the iPSC technology. These techniques have the advantage of easier cell culture, but only neurons (iNs) or neuroectodermal cells (iNSCs) can be generated. Although there are several open questions coming along with these new neural cell types, they hold great promises for both cell replacement and cell modelling of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 107(30):13426–13431. doi:10.1073/pnas.1007884107

    Article  PubMed  CAS  Google Scholar 

  • Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227. doi:10.1038/nature10284

    Article  PubMed  CAS  Google Scholar 

  • Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, Rizzo F, Nardini M, Riboldi G, Magri F, Zanetta C, Faravelli I, Bresolin N, Comi GP (2012) Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res 318(13):1528–1541. doi:10.1016/j.yexcr.2012.02.040

    Article  PubMed  CAS  Google Scholar 

  • Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. doi:10.1038/nature07677

    Article  PubMed  CAS  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67. doi:10.1038/nature09805

    Article  PubMed  CAS  Google Scholar 

  • Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472. doi:10.1016/j.stem.2012.02.021

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923. doi:10.1126/science.1152092

    Article  PubMed  CAS  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 107(36):15921–15926. doi:10.1073/pnas.1010209107

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi:10.1242/jcs.01307

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A (2006a) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83(8):1502–1514. doi:10.1002/jnr.20840

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Maisel M, Storch A (2006b) Epigenetic conversion of human adult bone mesodermal stromal cells into neuroectodermal cell types for replacement therapy of neurodegenerative disorders. Expert Opin Biol Ther 6(7):653–670. doi:10.1517/14712598.6.7.653

    Article  PubMed  CAS  Google Scholar 

  • Hikichi T, Matoba R, Ikeda T, Watanabe A, Yamamoto T, Yoshitake S, Tamura-Nakano M, Kimura T, Kamon M, Shimura M, Kawakami K, Okuda A, Okochi H, Inoue T, Suzuki A, Masui S (2013) Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1220200110

    PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582. doi:10.1016/j.cell.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775. doi:10.1038/nature07864

    Article  PubMed  CAS  Google Scholar 

  • Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A, Cossu G, Goldbrunner R, Gotz M, Berninger B (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11(4):471–476. doi:10.1016/j.stem.2012.07.007

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646–650. doi:10.1038/nature07061

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009a) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. doi:10.1016/j.stem.2009.05.005

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009b) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):643–649. doi:10.1038/nature08436

    Article  Google Scholar 

  • Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR (2009c) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419. doi:10.1016/j.cell.2009.01.023

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011a) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA 108(19):7838–7843. doi:10.1073/pnas.1103113108

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ (2011b) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29(12):1117–1119. doi:10.1038/nbt.2052

    Article  PubMed  CAS  Google Scholar 

  • Kleger A, Mahaddalkar PU, Katz SF, Lechel A, Joo JY, Loya K, Lin Q, Hartmann D, Liebau S, Kraus JM, Cantz T, Kestler HA, Zaehres H, Scholer H, Rudolph KL (2012) Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142(4):907–917. doi:10.1053/j.gastro.2012.01.004

    Article  PubMed  Google Scholar 

  • Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J, Mertens J, Tuting T, Hoffmann P, Klockgether T, Evert BO, Wullner U, Brustle O (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480(7378):543–546. doi:10.1038/nature10671

    PubMed  CAS  Google Scholar 

  • Koch P, Tamboli IY, Mertens J, Wunderlich P, Ladewig J, Stuber K, Esselmann H, Wiltfang J, Brustle O, Walter J (2012) Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of gamma-secretase activity in endogenous amyloid-beta generation. Am J Pathol 180(6):2404–2416. doi:10.1016/j.ajpath.2012.02.012

    Article  PubMed  CAS  Google Scholar 

  • Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F, Herms S, Wernet P, Kogler G, Muller FJ, Koch P, Brustle O (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 9(6):575–578. doi:10.1038/nmeth.1972

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL, Cooper R Jr, Albert PS, Fine HA (2003) Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential anti glioma cellular vector. Cancer Res 63(24):8877–8889

    PubMed  CAS  Google Scholar 

  • Linta L, Stockmann M, Kleinhans KN, Bockers A, Storch A, Zaehres H, Lin Q, Barbi G, Bockers TM, Kleger A, Liebau S (2012) Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem Cells Dev 21(6):965–976. doi:10.1089/scd.2011.0026

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi:10.1038/nature09798

    Article  PubMed  CAS  Google Scholar 

  • Lohle M, Hermann A, Glass H, Kempe A, Schwarz SC, Kim JB, Poulet C, Ravens U, Schwarz J, Scholer HR, Storch A (2012) Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors. Stem Cells 30(3):570–579. doi:10.1002/stem.1016

    Article  PubMed  Google Scholar 

  • Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci USA 109(7):2527–2532. doi:10.1073/pnas.1121003109

    Article  PubMed  CAS  Google Scholar 

  • Maisel M, Habisch HJ, Royer L, Herr A, Milosevic J, Hermann A, Liebau S, Brenner R, Schwarz J, Schroeder M, Storch A (2010) Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Exp Cell Res 316(17):2760–2778. doi:10.1016/j.yexcr.2010.06.012

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745. doi:10.1038/nbt.1554

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu G, Saito S, Kosaka T, Takubo K, Kinoshita T, Oya M, Horimoto K, Suda T (2012) Optimal ratio of transcription factors for somatic cell reprogramming. J Biol Chem 287(43):36273–36282. doi:10.1074/jbc.M112.380683

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416. doi:10.1161/CIRCULATIONAHA.109.865154

    Article  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953. doi:10.1126/science.1164270

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. doi:10.1002/stem.1293

    Article  PubMed  CAS  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223. doi:10.1038/nature10202

    PubMed  CAS  Google Scholar 

  • Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25(6):1511–1520. doi:10.1634/stemcells.2006-0707

    Article  PubMed  CAS  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA 108(25):10343–10348. doi:10.1073/pnas.1105135108

    Article  PubMed  CAS  Google Scholar 

  • Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti WB, Moreno H, Abeliovich A (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146(3):359–371. doi:10.1016/j.cell.2011.07.007

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt P, Schmid B, Burbulla LF, Schondorf DC, Wagner L, Glatza M, Hoing S, Hargus G, Heck SA, Dhingra A, Wu G, Muller S, Brockmann K, Kluba T, Maisel M, Kruger R, Berg D, Tsytsyura Y, Thiel CS, Psathaki OE, Klingauf J, Kuhlmann T, Klewin M, Muller H, Gasser T, Scholer HR, Sterneckert J (2013) Genetic correction of a LRRK2 mutation in human iPSCs Links Parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12(3):354–367. doi:10.1016/j.stem.2013.01.008

    Article  PubMed  CAS  Google Scholar 

  • Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. doi:10.1016/j.stem.2012.05.018

    Article  PubMed  CAS  Google Scholar 

  • Sheng C, Zheng Q, Wu J, Xu Z, Wang L, Li W, Zhang H, Zhao XY, Liu L, Wang Z, Guo C, Wu HJ, Liu Z, He S, Wang XJ, Chen Z, Zhou Q (2012) Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 22(1):208–218. doi:10.1038/cr.2011.175

    Article  PubMed  CAS  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. doi:10.1016/j.cell.2009.02.013

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. doi:10.1126/science.1162494

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Schwarz J (2002) Neural stem cells and neurodegeneration. Curr Opin Investig Drugs 3(5):774–781

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  • Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. doi:10.1016/j.stem.2012.03.003

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi:10.1038/nature08797

    Article  PubMed  CAS  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. doi:10.1016/j.stem.2010.08.012

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu XD (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152(1–2):82–96. doi:10.1016/j.cell.2012.11.045

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. doi:10.1126/science.1172482

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384. doi:10.1016/j.stem.2009.04.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research of the authors was supported by the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center 655 ‘Cells into tissues: stem cell and progenitor commitment and interactions during tissue formation’ (SFB 655, project A23) and the DFG-Research centre and Cluster of Excellence “Centre for Regenerative Therapies Dresden (CRTD)”, the Thyssen-Stiftung, and the Landesstiftung Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Hermann or Alexander Storch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, A., Storch, A. Induced neural stem cells (iNSCs) in neurodegenerative diseases. J Neural Transm 120 (Suppl 1), 19–25 (2013). https://doi.org/10.1007/s00702-013-1042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1042-9

Keywords

Navigation