Skip to main content

Advertisement

Log in

Advancing therapeutic options in multiple sclerosis with neuroprotective properties

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) inflammation has been considered to be the main pathological feature of multiple sclerosis (MS). However, the complexity of this autoimmune disorder also comprises neurodegenerative processes that may occur within acute phases of inflammation, yet also temporally independent and outside of inflammatory lesions or even in so-called normal appearing white matter. Measurement strategies for neurodegeneration and neuroprotection include clinical parameters, magnetic resonance imaging and novel instruments such as diffusion tensor imaging or optical coherence tomography. Neurotrophic factors activate endogenous neuroprotective pathways. Their up-regulation by CNS-infiltrating immune cells has led to the concept of neuroprotective autoimmunity. The capacity to enhance this endogenous neuroprotection is a valuable property for therapeutic agents and has in detail been studied for glatirameracetate, laquinimod and dimethylfumarate. Multimodal measurement of neuroprotective properties of established and novel MS therapeutics and further elucidation of neuroprotective pathways within the autoimmune process will be useful to augment our insight into the complexity of the disease and to improve therapy, especially in terms of long-term disability and cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R (2003) Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci USA 100(24):14157–14162. doi:10.1073/pnas.2336171100

    Article  PubMed  CAS  Google Scholar 

  • Aharoni R, Saada R, Eilam R, Hayardeny L, Sela M, Arnon R (2012) Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 251(1–2):14–24. doi:10.1016/j.jneuroim.2012.06.005

    Article  PubMed  CAS  Google Scholar 

  • Albrecht P, Ringelstein M, Muller AK, Keser N, Dietlein T, Lappas A, Foerster A, Hartung HP, Aktas O, Methner A (2012) Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult Scler 18(10):1422–1429. doi:10.1177/1352458512439237

    Article  PubMed  CAS  Google Scholar 

  • Altmeyer PJ, Matthes U, Pawlak F, Hoffmann K, Frosch PJ, Ruppert P, Wassilew SW, Horn T, Kreysel HW, Lutz G et al (1994) Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J Am Acad Dermatol 30(6):977–981

    Article  PubMed  CAS  Google Scholar 

  • Amato MP, Langdon D, Montalban X, Benedict RH, Deluca J, Krupp LB, Thompson AJ, Comi G (2012) Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol. doi:10.1007/s00415-012-6678-0

    PubMed  Google Scholar 

  • Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, Ludolph A, Schwartz M (2003) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 100(8):4790–4795. doi:10.1073/pnas.0530191100

    Article  PubMed  CAS  Google Scholar 

  • Avidan H, Kipnis J, Butovsky O, Caspi RR, Schwartz M (2004) Vaccination with autoantigen protects against aggregated beta-amyloid and glutamate toxicity by controlling microglia: effect of CD4+ CD25+ T cells. Eur J Immunol 34(12):3434–3445. doi:10.1002/eji.200424883

    Article  PubMed  CAS  Google Scholar 

  • Barres BA (1996) Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. Mol Cell Neurosci 8:146–156

    Article  CAS  Google Scholar 

  • Bosma L, Kragt J, Polman C, Uitdehaag B (2013) Walking speed, rather than Expanded Disability Status Scale, relates to long-term patient-reported impact in progressive MS. Mult Scler 19(3):326–333. doi:10.1177/1352458512454346

    Article  PubMed  Google Scholar 

  • Bruck W, Pfortner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, Hanisch UK, Regen T, van Rossum D, Brakelmann L, Hagemeier K, Kuhlmann T, Stadelmann C, John GR, Kramann N, Wegner C (2012) Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 124(3):411–424. doi:10.1007/s00401-012-1009-1

    Article  PubMed  Google Scholar 

  • Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, Filippi M (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366(11):1000–1009. doi:10.1056/NEJMoa1104318

    Article  PubMed  CAS  Google Scholar 

  • Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592

    Article  PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477

    Article  PubMed  Google Scholar 

  • Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. doi:10.1056/NEJMoa1206328

    Article  PubMed  CAS  Google Scholar 

  • Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4(12):664–675. doi:10.1038/ncpneuro0950

    Article  PubMed  Google Scholar 

  • Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 8(1):117–132. doi:10.1007/s13311-010-0005-1

    Article  PubMed  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971. doi:10.1093/brain/awl075

    Article  PubMed  Google Scholar 

  • Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. doi:10.1056/NEJMoa1114287

    Article  PubMed  CAS  Google Scholar 

  • Goodin DS, Ebers GC, Cutter G, Cook SD, O’Donnell T, Reder AT, Kremenchutzky M, Oger J, Rametta M, Beckmann K, Knappertz V (2012) Cause of death in MS: long-term follow-up of a randomised cohort, 21 years after the start of the pivotal IFNbeta-1b study. BMJ Open 2(6). doi:10.1136/bmjopen-2012-001972

  • Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T, Volsky DJ, Poluektova L, Gendelman HE (2007) Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. J Immunol 179(7):4345–4356

    PubMed  CAS  Google Scholar 

  • Greenberg BM, Frohman E (2010) Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 3(3):153–160. doi:10.1177/1756285610368890

    Article  PubMed  Google Scholar 

  • Hafler DA, Slavik JM, Anderson DE, O’Connor KC, De Jager P, Baecher-Allan C (2005) Multiple sclerosis. Immunol Rev 204:208–231. doi:10.1111/j.0105-2896.2005.00240.x

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9(8):2459–2464

    PubMed  CAS  Google Scholar 

  • Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci USA 101(Suppl 2):14599–14606. doi:10.1073/pnas.0404874101

    Article  PubMed  CAS  Google Scholar 

  • Hulst HE, Steenwijk MD, Versteeg A, Pouwels PJ, Vrenken H, Uitdehaag BM, Polman CH, Geurts JJ, Barkhof F (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology. doi:10.1212/WNL.0b013e31828726cc

    PubMed  Google Scholar 

  • Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O’Neill GN (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372(9648):1463–1472. doi:10.1016/S0140-6736(08)61619-0

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189(5):865–870

    Article  PubMed  CAS  Google Scholar 

  • Kipnis J, Schwartz M (2002) Dual action of glatiramer acetate (Cop-1) in the treatment of CNS autoimmune and neurodegenerative disorders. Trends Mol Med 8(7):319–323

    Article  PubMed  CAS  Google Scholar 

  • Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317. doi:10.1146/annurev.ne.19.030196.001445

    Article  PubMed  CAS  Google Scholar 

  • Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8(6):620–624. doi:10.1038/nm0602-620

    Article  PubMed  CAS  Google Scholar 

  • Linker RA, Lee DH, Demir S, Wiese S, Kruse N, Siglienti I, Gerhardt E, Neumann H, Sendtner M, Luhder F, Gold R (2010) Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 133(Pt 8):2248–2263. doi:10.1093/brain/awq179

    Article  PubMed  Google Scholar 

  • Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, Ellrichmann G, Bruck W, Dawson K, Goelz S, Wiese S, Scannevin RH, Lukashev M, Gold R (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134(Pt 3):678–692. doi:10.1093/brain/awq386

    Article  PubMed  Google Scholar 

  • Louis JC, Magal E, Takayama S, Varon S (1993) CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259:689–692

    Article  PubMed  CAS  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46(4):907–911

    Article  PubMed  CAS  Google Scholar 

  • Lukas C, Minneboo A, de Groot V, Moraal B, Knol DL, Polman CH, Barkhof F, Vrenken H (2010) Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry 81(12):1351–1356. doi:10.1136/jnnp.2009.199968

    Article  PubMed  Google Scholar 

  • Naismith RT, Tutlam NT, Xu J, Klawiter EC, Shepherd J, Trinkaus K, Song SK, Cross AH (2009) Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 72(12):1077–1082. doi:10.1212/01.wnl.0000345042.53843.d5

    Article  PubMed  CAS  Google Scholar 

  • Nieboer C, de Hoop D, Langendijk PN, van Loenen AC, Gubbels J (1990) Fumaric acid therapy in psoriasis: a double-blind comparison between fumaric acid compound therapy and monotherapy with dimethylfumaric acid ester. Dermatologica 181(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou A, D’Souza M, Kappos L, Yaldizli O (2010) Dimethyl fumarate for multiple sclerosis. Expert Opin Investig Drugs 19(12):1603–1612. doi:10.1517/13543784.2010.534778

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou A, Muller-Lenke N, Naegelin Y, Kalt G, Bendfeldt K, Kuster P, Stoecklin M, Gass A, Sprenger T, Wilhelm Radue E, Kappos L, Penner IK (2013) Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult Scler. doi:10.1177/1352458513475490

    Google Scholar 

  • Penner IK, Stemper B, Calabrese P, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Pleimes D, Lanius V, Pohl C, Kappos L, Sandbrink R (2012) Effects of interferon beta-1b on cognitive performance in patients with a first event suggestive of multiple sclerosis. Mult Scler 18(10):1466–1471. doi:10.1177/1352458512442438

    Article  PubMed  Google Scholar 

  • Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, Calabresi PA, Polman C (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9(9):921–932. doi:10.1016/S1474-4422(10)70168-X

    Article  PubMed  Google Scholar 

  • Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, Calabresi PA, Kerr DA (2009) Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73(4):302–308. doi:10.1212/WNL.0b013e3181af78b8

    Article  PubMed  CAS  Google Scholar 

  • Rovaris M, Filippi M, Minicucci L, Iannucci G, Santuccio G, Possa F, Comi G (2000) Cortical/subcortical disease burden and cognitive impairment in patients with multiple sclerosis. AJNR 21(2):402–408

    PubMed  CAS  Google Scholar 

  • Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, Hoffmann V, Pohlau D, Przuntek H (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurology 13(6):604–610. doi:10.1111/j.1468-1331.2006.01292.x

    Article  CAS  Google Scholar 

  • Schweckendiek W (1959) Treatment of psoriasis vulgaris. Medizinische Monatsschrift 13(2):103–104

    PubMed  CAS  Google Scholar 

  • Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125(Pt 1):75–85

    Article  PubMed  Google Scholar 

  • Thone J, Ellrichmann G, Seubert S, Peruga I, Lee DH, Conrad R, Hayardeny L, Comi G, Wiese S, Linker RA, Gold R (2012) Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 180(1):267–274. doi:10.1016/j.ajpath.2011.09.037

    Article  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338(5):278–285. doi:10.1056/NEJM199801293380502

    Article  PubMed  CAS  Google Scholar 

  • Ziemssen T, Kumpfel T, Klinkert WE, Neuhaus O, Hohlfeld R (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125(Pt 11):2381–2391

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. A. Stroet has received personal compensation for activities with Novartis, Sanofi and Almirall Hermal GmbH. R. A. Linker has received personal compensation for activities with Bayer Healthcare, Biogen Idec, Fresenius, Genzyme, Merck Serono, Novartis, Terumo BCT and Teva Neuroscience, patent payments from Biogen Idec and research support from to-BBB, Biogen Idec, Merck Serono, Novartis and Teva Neuroscience. R. Gold has received personal compensation for activities with Bayer Healthcare, Biogen Idec and Teva Neuroscience and in an editorial capacity from Therapeutic Advances in Neurological Disorders, and also received patent payments from Biogen Idec and research support from Bayer Healthcare, Biogen Idec, Merck Serono, Teva Neuroscience, Novartis and from the German Ministry for Education and Research (BMBF, “German Competence Network Multiple Sclerosis” (KKNMS), CONTROL MS, 01GI0914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroet, A., Linker, R.A. & Gold, R. Advancing therapeutic options in multiple sclerosis with neuroprotective properties. J Neural Transm 120 (Suppl 1), 49–53 (2013). https://doi.org/10.1007/s00702-013-1037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1037-6

Keywords

Navigation