Journal of Neural Transmission

, Volume 120, Issue 9, pp 1295–1303 | Cite as

A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity

  • Ede Frecska
  • Attila Szabo
  • Michael J. Winkelman
  • Luis E. Luna
  • Dennis J. McKenna
Translational Neurosciences - Review article

Abstract

N,N-dimethyltryptamine (DMT) is classified as a naturally occurring serotonergic hallucinogen of plant origin. It has also been found in animal tissues and regarded as an endogenous trace amine transmitter. The vast majority of research on DMT has targeted its psychotropic/psychedelic properties with less focus on its effects beyond the nervous system. The recent discovery that DMT is an endogenous ligand of the sigma-1 receptor may shed light on yet undiscovered physiological mechanisms of DMT activity and reveal some of its putative biological functions. A three-step active uptake process of DMT from peripheral sources to neurons underscores a presumed physiological significance of this endogenous hallucinogen. In this paper, we overview the literature on the effects of sigma-1 receptor ligands on cellular bioenergetics, the role of serotonin, and serotoninergic analogues in immunoregulation and the data regarding gene expression of the DMT synthesizing enzyme indolethylamine-N-methyltransferase in carcinogenesis. We conclude that the function of DMT may extend central nervous activity and involve a more universal role in cellular protective mechanisms. Suggestions are offered for future directions of indole alkaloid research in the general medical field. We provide converging evidence that while DMT is a substance which produces powerful psychedelic experiences, it is better understood not as a hallucinogenic drug of abuse, but rather an agent of significant adaptive mechanisms that can also serve as a promising tool in the development of future medical therapies.

Keywords

N,N-dimethyltryptamine Indolethylamine-N-methyltransferase Sigma receptors Oxidative stress Immunoregulation Carcinogenesis 

References

  1. Ahern GP (2011) 5-HT and the immune system. Curr Opin Pharmacol 11:29–33. doi:10.1016/j.coph.2011.02.004 PubMedCrossRefGoogle Scholar
  2. Axelrod J (1961) Enzymatic formation of psychotomimetic metabolites from normally occurring compounds. Science 134:343PubMedCrossRefGoogle Scholar
  3. Aydar E, Palmer CP, Djamgoz MB (2004) Sigma receptors and cancer: possible involvement of ion channels. Cancer Res 64:5029–5035PubMedCrossRefGoogle Scholar
  4. Barker SA, Monti JA, Christian ST (1981) N, N-dimethyltryptamine: an endogenous hallucinogen. Int Rev Neurobiol 22:83–110PubMedCrossRefGoogle Scholar
  5. Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1982) Comparison of the brain levels of N, N-dimethyltryptamine and alpha, alpha, beta, beta-tetradeutero-N, N-dimethyltryptamine following intraperitoneal injection. The in vivo kinetic isotope effect. Biochem Pharmacol 31:2513–2516PubMedCrossRefGoogle Scholar
  6. Barker SA, McIlhenny EH, Strassman R (2012) A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4:617–635. doi:10.1002/dta.422 PubMedCrossRefGoogle Scholar
  7. Beaton JM, Christian ST (1977) Stress induced changes in whole brain indolealkylamine levels in the rat: using gas liquid chromatography-mass spectrometry. Abstr Soc Neurosci 4:1322Google Scholar
  8. Bennett JP Jr, Snyder SH (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol 12:373–389PubMedGoogle Scholar
  9. Bourrie B, Bribes E, Derocq JM, Vidal H, Casellas P (2004) Sigma receptor ligands: applications in inflammation and oncology. Curr Opin Investig Drugs 5:1158–1163PubMedGoogle Scholar
  10. Callaway JC (1988) A proposed mechanism for the visions of dream sleep. Med Hypotheses 26:119–124PubMedCrossRefGoogle Scholar
  11. Caraglia M, Marra M, Tagliaferri P, Lamberts SW, Zappavigna S, Misso G, Cavagnini F, Facchini G, Abbruzzese A, Hofland LJ, Vitale G (2009) Emerging strategies to strengthen the anti-tumour activity of type I interferons: overcoming survival pathways. Curr Cancer Drug Targets 9:690–704. doi:10.2174/156800909789056980 PubMedCrossRefGoogle Scholar
  12. Christian ST, Harrison R, Quayle E, Pagel J, Monti J (1977) The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent. Biochem Med 18:164–183PubMedCrossRefGoogle Scholar
  13. Cloez-Tayarani I, Changeux JP (2007) Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. J Leukoc Biol 81:599–606PubMedCrossRefGoogle Scholar
  14. Cohen I, Vogel WH (1972) Determination and physiological disposition of dimethyltryptamine and diethyltryptamine in rat brain, liver and plasma. Biochem Pharmacol 21:1214–1216PubMedCrossRefGoogle Scholar
  15. Collina S, Gaggeri R, Marra A, Bassi A, Negrinotti S, Negri F, Rossi D (2013) Sigma receptor modulators: a patent review. Expert Opin Ther Pat (epub ahead of print) doi:10.1517/13543776.2013.769522
  16. Cozzi NV, Gopalakrishnan A, Anderson LL, Feih JT, Shulgin AT, Daley PF, Ruoho AE (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116:1591–1599. doi:10.1007/s00702-009-0308-8 PubMedCrossRefGoogle Scholar
  17. Cozzi NV, Mavlyutov TA, Thompson MA, Ruoho AE (2011) Indolethylamine-N-methyltransferase expression in primate nervous tissue. Abstr Soc Neurosci 37:840.19Google Scholar
  18. Cuevas J, Behensky A, Deng W, Katnik C (2011a) Afobazole modulates neuronal response to ischemia and acidosis via activation of sigma-1 receptors. J Pharmacol Exp Ther 339:152–160. doi:10.1124/jpet.111.182774 PubMedCrossRefGoogle Scholar
  19. Cuevas J, Rodriguez A, Behensky A, Katnik C (2011b) Afobazole modulates microglial function via activation of both sigma-1 and sigma-2 receptors. J Pharmacol Exp Ther 339:161–172. doi:10.1124/jpet.111.182816 PubMedCrossRefGoogle Scholar
  20. Daumann J, Wagner D, Heekeren K, Neukirch A, Thiel CM, Gouzoulis-Mayfrank E (2010) Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis. J Psychopharmacol 24:1515–1524. doi:10.1177/0269881109103227 PubMedCrossRefGoogle Scholar
  21. Deliganis AV, Pierce PA, Peroutka SJ (1991) Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors. Biochem Pharmacol 41:1739–1744PubMedCrossRefGoogle Scholar
  22. Derocq JM, Bourrie B, Segui M, Le Fur G, Casellas P (1995) In vivo inhibition of endotoxin-induced pro-inflammatory cytokines production by the sigma ligand SR-31747. J Pharmacol Exp Ther 272:224–230PubMedGoogle Scholar
  23. Dos Santos RG, Valle M, Bouso JC, Nomdedeu JF, Rodriguez-Espinosa J, McIlhenny EH, Barker SA, Barbanoj MJ, Riba J (2011) Autonomic, neuroendocrine, and immunological effects of ayahuasca: a comparative study with d-amphetamine. J Clin Psychopharmacol 31:717–726. doi:10.1097/JCP.0b013e31823607f6 PubMedCrossRefGoogle Scholar
  24. Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N, N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937. doi:10.1126/science.1166127 PubMedCrossRefGoogle Scholar
  25. Gekker G, Hu S, Sheng WS, Rock RB, Lokensgard JR, Peterson PK (2006) Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-beta1. Int Immunopharmacol 6:1029–1033PubMedCrossRefGoogle Scholar
  26. Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135. doi:10.1038/nri3133 PubMedGoogle Scholar
  27. Griesmaier E, Posod A, Gross M, Neubauer V, Wegleiter K, Hermann M, Urbanek M, Keller M, Kiechl-Kohlendorfer U (2012) Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice. Exp Neurol 237:388–395. doi:10.1016/j.expneurol.2012.06.030 PubMedCrossRefGoogle Scholar
  28. Guzman-Lenis MS, Navarro X, Casas C (2009) Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience 162:31–38. doi:10.1016/j.neuroscience.2009.03.067 PubMedCrossRefGoogle Scholar
  29. Hall AA, Herrera Y, Ajmo CT Jr, Cuevas J, Pennypacker KR (2009) Sigma receptors suppress multiple aspects of microglial activation. Glia 57:744–754. doi:10.1002/glia.20802 PubMedCrossRefGoogle Scholar
  30. Hayashi T, Su TP (2004) Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 18:269–284PubMedCrossRefGoogle Scholar
  31. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610PubMedCrossRefGoogle Scholar
  32. Hollister LE (1977) Some general thoughts about endogenous psychotogens. In: Usdin E, Hamburg DA, Barchas JD (eds) Neuroregulators and psychiatric disorders. Oxford University Press, New York, pp 550–556Google Scholar
  33. Jacob MS, Presti DE (2005) Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med Hypotheses 64:930–937PubMedCrossRefGoogle Scholar
  34. Jenner P, Marsden CD, Thanki CM (1980) Behavioural changes induced by N, N-dimethyl-tryptamine in rodents. Br J Pharmacol 69:69–80PubMedCrossRefGoogle Scholar
  35. Karkkainen J, Forsstrom T, Tornaeus J, Wahala K, Kiuru P, Honkanen A, Stenman UH, Turpeinen U, Hesso A (2005) Potentially hallucinogenic 5-hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scand J Clin Lab Invest 65:189–199PubMedCrossRefGoogle Scholar
  36. Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J (2006) Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther 319:1355–1365PubMedCrossRefGoogle Scholar
  37. Klouz A, Said DB, Ferchichi H, Kourda N, Ouanes L, Lakhal M, Tillement JP, Morin D (2008) Protection of cellular and mitochondrial functions against liver ischemia by N-benzyl-N′-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine (BHDP), a sigma-1 ligand. Eur J Pharmacol 578:292–299PubMedCrossRefGoogle Scholar
  38. Kopantzev EP, Monastyrskaya GS, Vinogradova TV, Zinovyeva MV, Kostina MB, Filyukova OB, Tonevitsky AG, Sukhikh GT, Sverdlov ED (2008) Differences in gene expression levels between early and later stages of human lung development are opposite to those between normal lung tissue and non-small lung cell carcinoma. Lung Cancer 62:23–34PubMedCrossRefGoogle Scholar
  39. Kourrich S, Su TP, Fujimoto M, Bonci A (2012) The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 35:762–771. doi:10.1016/j.tins.2012.09.007 PubMedCrossRefGoogle Scholar
  40. Kuhn T (1970) The structure of scientific revolutions. University of Chicago Press, ChicagoGoogle Scholar
  41. Larkin SE, Holmes S, Cree IA, Walker T, Basketter V, Bickers B, Harris S, Garbis SD, Townsend PA, Aukim-Hastie C (2012) Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer 106:157–165. doi:10.1038/bjc.2011.490 PubMedCrossRefGoogle Scholar
  42. Lasfar A, Abushahba W, Balan M, Cohen-Solal KA (2011) Interferon lambda: a new sword in cancer immunotherapy. Clin Dev Immunol 2011:349575. doi:10.1155/2011/349575 PubMedCrossRefGoogle Scholar
  43. Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109:3139–3146PubMedCrossRefGoogle Scholar
  44. Lin RL, Sargeant S, Narasimhachari N (1974) Indolethylamine-N-methyltransferase in developing rabbit lung. Dev Psychobiol 7:475–481PubMedCrossRefGoogle Scholar
  45. Luedtke RR, Perez E, Yang SH, Liu R, Vangveravong S, Tu Z, Mach RH, Simpkins JW (2012) Neuroprotective effects of high affinity sigma 1 receptor selective compounds. Brain Res 1441:17–26. doi:10.1016/j.brainres.2011.12.047 PubMedCrossRefGoogle Scholar
  46. Luna LE (2011) Indigenous and mestizo use of ayahuasca: an overview. In: Dos Santos RG (ed) The ethnopharmacology of ayahuasca. Transworld Research Network, Kerala, pp 1–21Google Scholar
  47. Mancuso R, Oliván S, Rando A, Casas C, Osta R, Navarro X (2012) Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 9:814–826. doi:10.1007/s13311-012-0140-y PubMedCrossRefGoogle Scholar
  48. Marzullo G, Rosengarten H, Friedhoff AJ (1977) A peptide-like inhibitor of N-methyltransferase in rabbit brain. Life Sci 20:775–783PubMedCrossRefGoogle Scholar
  49. Mavlyutov TA, Epstein ML, Liu P, Verbny YI, Ziskind-Conhaim L, Ruoho AE (2012) Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N, N′-dimethyltryptamine forming enzyme, indole-N-methyl transferase. Neuroscience 206:60–68PubMedCrossRefGoogle Scholar
  50. McEwen CM Jr, Sober AJ (1967) Rabbit serum monoamine oxidase. II. Determinants of substrate specificity. J Biol Chem 242:3068–3078PubMedGoogle Scholar
  51. McKenna DJ, Peroutka SJ (1989) Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. J Neurosci 9:3482–34890PubMedGoogle Scholar
  52. Megalizzi V, Mathieu V, Mijatovic T, Gailly P, Debeir O, De Neve N, Van Damme M, Bontempi G, Haibe-Kains B, Decaestecker C, Kondo Y, Kiss R, Lefranc F (2007) 4-IBP, a sigma1 receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 9:358–369PubMedCrossRefGoogle Scholar
  53. Mueller BH 2nd, Park Y, Daudt DR 3rd, Ma HY, Akopova I, Stankowska DL, Clark AF, Yorio T (2013) Sigma-1 receptor stimulation attenuates calcium influx through activated L-type Voltage Gated Calcium Channels in purified retinal ganglion cells. Exp Eye Res 107:21–31. doi:10.1016/j.exer.2012.11.002 PubMedCrossRefGoogle Scholar
  54. Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137PubMedCrossRefGoogle Scholar
  55. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181PubMedCrossRefGoogle Scholar
  56. Nuno-Ayala M, Guillen N, Arnal C, Lou-Bonafonte JM, de Martino A, Garcia-de-Jalon JA, Gascon S, Osaba L, Osada J, Navarro MA (2012) Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiol Genomics 44:702–716. doi:10.1152/physiolgenomics.00189.2010 PubMedCrossRefGoogle Scholar
  57. O’Connell PJ, Wang X, Leon-Ponte M, Griffiths C, Pingle SC, Ahern GP (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107:1010–1017PubMedCrossRefGoogle Scholar
  58. Pal A, Fontanilla D, Gopalakrishnan A, Chae YK, Markley JL, Ruoho AE (2012) The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol 682:12–20. doi:10.1016/j.ejphar.2012.01.030 PubMedCrossRefGoogle Scholar
  59. Penas C, Pascual-Font A, Mancuso R, Forés J, Casas C, Navarro X (2011) Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 28:831–840. doi:10.1089/neu.2010.1674 PubMedCrossRefGoogle Scholar
  60. Pierce PA, Peroutka SJ (1990) Antagonist properties of d-LSD at 5-hydroxytryptamine2 receptors. Neuropsychopharmacology 3:503–508PubMedGoogle Scholar
  61. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86PubMedCrossRefGoogle Scholar
  62. Reimann W, Schneider F (1993) The serotonin receptor agonist 5-methoxy-N, N-dimethyltryptamine facilitates noradrenaline release from rat spinal cord slices and inhibits monoamine oxidase activity. Gen Pharmacol 24:449–453PubMedCrossRefGoogle Scholar
  63. Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, Toresson H, Ruslim-Litrus L, Oksenberg D, Urfer R, Johansson BB, Nikolich K, Wieloch T (2011) The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 134:732–746. doi:10.1093/brain/awq367 PubMedCrossRefGoogle Scholar
  64. Ruscher K, Inacio AR, Valind K, Rowshan Ravan A, Kuric E, Wieloch T (2012) Effects of the sigma-1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)-piperazine dihydro-chloride on inflammation after stroke. PLoS One 7:e45118 doi: 10.1371/journal.pone.0045118
  65. Sangiah S, Gomez MV, Domino EF (1979) Accumulation of N, N-dimethyltryptamine in rat brain cortical slices. Biol Psychiatry 14:925–936PubMedGoogle Scholar
  66. Schetz JA, Perez E, Liu R, Chen S, Lee I, Simpkins JW (2007) A prototypical sigma-1 receptor antagonist protects against brain ischemia. Brain Res 1181:1–9PubMedCrossRefGoogle Scholar
  67. Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987) In vivo metabolism of 5-methoxy-N, N-dimethyltryptamine and N, N-dimethyltryptamine in the rat. Biochem Pharmacol 36:1509–1512PubMedCrossRefGoogle Scholar
  68. Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61:323–330PubMedCrossRefGoogle Scholar
  69. Stahl SM (2008) The sigma enigma: can sigma receptors provide a novel target for disorders of mood and cognition? J Clin Psychiatry 69:1673–1674PubMedCrossRefGoogle Scholar
  70. Strassman RJ (1995) Hallucinogenic drugs in psychiatric research and treatment. Perspectives and prospects. J Nerv Ment Dis 183:127–138PubMedCrossRefGoogle Scholar
  71. Strassman RJ (2001) DMT: the spirit molecule. A doctor’s revolutionary research into the biology of near-death and mystical experiences. Park Street Press, RochesterGoogle Scholar
  72. Strassman RJ, Qualls CR, Berg LM (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N, N-dimethyltryptamine in humans. Biol Psychiatry 39:784–795PubMedCrossRefGoogle Scholar
  73. Su TP, Hayashi T, Vaupel DB (2009) When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2:pe12 doi: 10.1126/scisignal.261pe12
  74. Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31:557–566. doi:10.1016/j.tips.2010.08.007 PubMedCrossRefGoogle Scholar
  75. Szabo A, Osman RM, Bacskai I, Kumar BV, Agod Z, Lanyi A, Gogolak P, Rajnavolgyi E (2012) Temporally designed treatment of melanoma cells by ATRA and polyI: C results in enhanced chemokine and IFNβ secretion controlled differently by TLR3 and MDA5. Melanoma Res 22:351–361. doi:10.1097/CMR.0b013e328357076c PubMedCrossRefGoogle Scholar
  76. Szara S (1956) Dimethyltryptamin: its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia 12:441–442PubMedCrossRefGoogle Scholar
  77. Szara S (1994) Are hallucinogens psychoheuristic? NIDA Res Monogr 146:33–51PubMedGoogle Scholar
  78. Tagashira H, Zhang C, Lu YM, Hasegawa H, Kanai H, Han F, Fukunaga K (2013) Stimulation of σ(1)-receptor restores abnormal mitochondrial Ca(2+) mobilization and ATP production following cardiac hypertrophy. Biochim Biophys Acta (epub ahead of print) doi: 10.1016/j.bbagen.2012.12.029
  79. Takahashi T, Takahashi K, Ido T, Yanai K, Iwata R, Ishiwata K, Nozoe S (1985) 11C-labeling of indolealkylamine alkaloids and the comparative study of their tissue distributions. Int J Appl Radiat Isot 36:965–969PubMedCrossRefGoogle Scholar
  80. Tchedre KT, Yorio T (2008) Sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation. Invest Ophthalmol Vis Sci 49:2577–2588PubMedCrossRefGoogle Scholar
  81. Thompson MA, Moon E, Kim UJ, Xu J, Siciliano MJ, Weinshilboum RM (1999) Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 61:285–297PubMedCrossRefGoogle Scholar
  82. Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF, Zhang Y, Becker KG, Hoffer BJ, Su TP (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci USA 106:22468–72243. doi:10.1073/pnas.0909089106 PubMedCrossRefGoogle Scholar
  83. Tsai SY, Rothman RK, Su TP (2012) Insights into the sigma-1 receptor chaperone’s cellular functions: a microarray report. Synapse 66:42–51. doi:10.1002/syn.20984 PubMedCrossRefGoogle Scholar
  84. Tuerxun T, Numakawa T, Adachi N, Kumamaru E, Kitazawa H, Kudo M, Kunugi H (2010) SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett 469:303–308. doi:10.1016/j.neulet.2009.12.013 PubMedCrossRefGoogle Scholar
  85. Vagnerova K, Hurn PD, Bhardwaj A, Kirsch JR (2006) Sigma-1 receptor agonists act as neuroprotective drugs through inhibition of inducible nitric oxide synthase. Anesth Analg 103:430–434PubMedCrossRefGoogle Scholar
  86. Vitale AA, Pomilio AB, Cañellas CO, Vitale MG, Putz EM, Ciprian-Ollivier J (2011) In vivo long-term kinetics of radiolabeled N, N-dimethyltryptamine and tryptamine. J Nucl Med 52:970–977. doi:10.2967/jnumed.110.083246 PubMedCrossRefGoogle Scholar
  87. Wallach JV (2009) Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception. Med Hypotheses 72:91–94. doi:10.1016/j.mehy.2008.07.052 PubMedCrossRefGoogle Scholar
  88. Warren JM, Dham-Nayyar P, Alexander J (2012) Recreational use of naturally occurring dimethyltryptamine—contributing to psychosis? Aust N Z J Psychiatry (epub ahead of print) doi:10.1177/0004867412462749
  89. Watcharanurak K, Nishikawa M, Takahashi Y, Takakura Y (2012) Controlling the kinetics of interferon transgene expression for improved gene therapy. J Drug Target 20:764–769. doi:10.3109/1061186X.2012.716848 PubMedCrossRefGoogle Scholar
  90. Windbichler GH, Hausmaninger H, Stummvoll W, Graf AH, Kainz C, Lahodny J, Denison U, Muller-Holzner E, Marth C (2000) Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer 82:1138–1144PubMedCrossRefGoogle Scholar
  91. Yanai K, Ido T, Ishiwata K, Hatazawa J, Takahashi T, Iwata R, Matsuzawa T (1986) In vivo kinetics and displacement study of a carbon-11-labeled hallucinogen, N, N-[11C]dimethyltryptamine. Eur J Nucl Med 12:141–146PubMedCrossRefGoogle Scholar
  92. Yang S, Bhardwaj A, Cheng J, Alkayed NJ, Hurn PD, Kirsch JR (2007) Sigma receptor agonists provide neuroprotection in vitro by preserving bcl-2. Anesth Analg 104:1179–1184PubMedCrossRefGoogle Scholar
  93. Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC (2010) Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp Neurol 221:166–174. doi:10.1016/j.expneurol.2009.10.019 PubMedCrossRefGoogle Scholar
  94. Zhang Y, Shi Y, Qiao L, Sun Y, Ding W, Zhang H, Li N, Chen D (2012) Sigma-1 receptor agonists provide neuroprotection against gp120 via a change in bcl-2 expression in mouse neuronal cultures. Brain Res 1431:13–22. doi:10.1016/j.brainres.2011.10.053 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Ede Frecska
    • 1
  • Attila Szabo
    • 2
  • Michael J. Winkelman
    • 3
  • Luis E. Luna
    • 4
  • Dennis J. McKenna
    • 5
  1. 1.Department of Psychiatry, Medical and Health Science CenterUniversity of DebrecenDebrecenHungary
  2. 2.Department of Immunology, Medical and Health Science CenterUniversity of DebrecenDebrecenHungary
  3. 3.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  4. 4.Wasiwaska Research Center for the Study of Psychointegrator PlantsVisionary Art and ConsciousnessFlorianopolisBrazil
  5. 5.Center for Spirituality and Healing, Academic Health CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations