Skip to main content

Advertisement

Log in

Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01–0.05 % atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03–0.05 % atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02 %) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03 % of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL, Schaar BT, Svendsen CN, Bliss TM, Steinberg GK (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777–1789

    Article  PubMed  Google Scholar 

  • Barzilay R, Ben-Zur T, Sadan O, Bren Z, Taler M, Lev N, Tarasenko I, Uzan R, Gil-Ad I, Melamed E, Weizman A, Offen D (2011) Intracerebral adult stem cells transplantation increases brain-derived neurotrophic factor levels and protects against phencyclidine-induced social deficit in mice. Transl Psychiatry 1:e61

    Article  PubMed  CAS  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106:13594–13599

    Article  PubMed  CAS  Google Scholar 

  • Dressel R (2011) Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 33:573–591

    Article  PubMed  CAS  Google Scholar 

  • Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    PubMed  CAS  Google Scholar 

  • Freyria AM, Ronzière MC, Cortial D, Galois L, Hartmann D, Herbage D, Mallein-Gerin F (2009) Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A 15:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • George J, Kuboki Y, Miyata T (2006) Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng 95:404–411

    Article  PubMed  CAS  Google Scholar 

  • Glaser T, Brose C, Franceschini I, Hamann K, Smorodchenko A, Zipp F, Dubois-Dalcq M, Brüstle O (2007) Neural cell adhesion molecule polysialylation enhances the sensitivity of embryonic stem cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016–3025

    Article  PubMed  CAS  Google Scholar 

  • Hanai K, Takeshita F, Honma K, Nagahara S, Maeda M, Minakuchi Y, Sano A, Ochiya T (2006) Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann NY Acad Sci 1082:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hanai K, Kojima T, Ota M, Onodera J, Sawada N (2012) Effects of atelocollagen formulation containing oligonucleotide on endothelial permeability. J Drug Deliv 2012:245835

    Article  PubMed  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    Article  PubMed  Google Scholar 

  • Ishii T, Hashimoto E, Ukai W, Tateno M, Yoshinaga T, Saito S, Sohma H, Saito T (2008) Lithium-induced suppression of transcription repressor NRSF/REST: effects on the dysfunction of neuronal differentiation by ethanol. Eur J Pharmacol 593:36–43

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Zahir T, Tator CH, Shoichet MS (2011) Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLoS One 6:e21744

    Article  PubMed  CAS  Google Scholar 

  • Leasure JL, Nixon K (2010) Exercise neuroprotection in a rat model of binge alcohol consumption. Alcohol Clin Exp Res 34:404–414

    Article  PubMed  Google Scholar 

  • Lee KI, Moon SH, Kim H, Kwon UH, Kim HJ, Park SN, Suh H, Lee HM, Kim HS, Chun HJ, Kwon IK, Jang JW (2012) Tissue engineering of the intervertebral disc with cultured nucleus pulposus cells using atelocollagen scaffold and growth factors. Spine 37:452–458

    Article  PubMed  Google Scholar 

  • Lindvall O, Björklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393

    Article  PubMed  Google Scholar 

  • Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L, Liu L, Kong D (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2:845–854

    Article  PubMed  CAS  Google Scholar 

  • Maroof AM, Brown K, Shi SH, Studer L, Anderson SA (2010) Prospective isolation of cortical interneuron precursors from mouse embryonic stem cells. J Neurosci 30:4667–4675

    Article  PubMed  CAS  Google Scholar 

  • Master Z, McLeod M, Mendez I (2007) Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson’s disease. J Med Ethics 33:169–173

    Article  PubMed  Google Scholar 

  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni GD, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265:78–83

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32:e109

    Article  PubMed  Google Scholar 

  • Mizuno M, Fujisawa R, Kuboki Y (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 184:123–207

    Article  Google Scholar 

  • Muir D, Varon S, Manthorpe M (1990) An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. Anal Biochem 185:377–382

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Fujimoto Y, Yasunaga Y, Ishida O, Tanaka N, Ikuta Y, Ochi M (2003) Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Res 974:17–24

    Article  PubMed  CAS  Google Scholar 

  • Nixon K, Crews FT (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 83:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Ochiya T, Nagahara S, Sano A, Itoh H, Terada M (2001) Biomaterials for gene delivery: atelocollagen-mediated controlled release of molecular medicines. Curr Gene Ther 1:31–52

    Article  PubMed  CAS  Google Scholar 

  • Röhl C, Gülden M, Seibert H (2001) Toxicity of organotin compounds in primary cultures of rat cortical astrocytes. Cell Biol Toxicol 17:23–32

    Article  PubMed  Google Scholar 

  • Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L (2010) Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5:e14035

    Article  PubMed  Google Scholar 

  • Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 5:e12272

    Article  PubMed  Google Scholar 

  • Shear DA, Tate CC, Tate MC, Archer DR, LaPlaca MC, Stein DG, Dunbar GL (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29:215–225

    PubMed  Google Scholar 

  • Shirasaka T, Hashimoto E, Ukai W, Yoshinaga T, Ishii T, Tateno M, Saito T (2012) Stem cell therapy: social recognition recovery in a FASD model. Transl Psychiatry 2:e188

    Article  PubMed  CAS  Google Scholar 

  • Sieuwerts AM, Klijn JG, Peters HA, Foekens JA (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur J Clin Chem Clin Biochem 33:813–823

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, Miyawaki A, Toyama Y, Okano H, Nakamura M (2011) Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant 20:727–739

    Article  PubMed  Google Scholar 

  • Tanaka DH, Toriumi K, Kubo K, Nabeshima T, Nakajima K (2011) GABAergic precursor transplantation into the prefrontal cortex prevents phencyclidine-induced cognitive deficits. J Neurosci 31:14116–14125

    Article  PubMed  CAS  Google Scholar 

  • Tateno M, Ukai W, Yamamoto M, Hashimoto E, Ikeda H, Saito T (2005) The effect of ethanol on cell fate determination of neural stem cells. Alcohol Clin Exp Res 29:225–229

    Article  Google Scholar 

  • Tateno M, Ukai W, Hashimoto E, Ikeda H, Saito T (2006) Implication of increased NRSF/REST binding activity in the mechanism of ethanol inhibition of neuronal differentiation. J Neural Transm 113:283–293

    Article  PubMed  CAS  Google Scholar 

  • Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8:668–676

    Article  PubMed  Google Scholar 

  • Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29:1983–1994

    Article  PubMed  Google Scholar 

  • Yoshinaga T, Hashimoto E, Ukai W, Toki S, Saito S, Saito T (2007) Neural stem cell transplantation in a model of fetal alcohol effects. J Neural Transm Suppl 72:331–337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant-in-aid for Scientific Research No. 18390322 (Yoshinaga) and No. 18659335 (Saito) from the Japan Society for the Promotion of Science (JSPS).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Yoshinaga.

Additional information

Toshihiro Yoshinaga and Eri Hashimoto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshinaga, T., Hashimoto, E., Ukai, W. et al. Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model. J Neural Transm 120, 1491–1498 (2013). https://doi.org/10.1007/s00702-013-1010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1010-4

Keywords

Navigation