Skip to main content
Log in

CID: a valid incentive delay paradigm for children

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Despite several modifications and the wide use of the monetary incentive delay paradigm (MID; Knutson et al. in J Neurosci 21(16):RC159, 2001a) for assessing reward processing, evidence concerning its application in children is scarce. A first child-friendly MID modification has been introduced by Gotlib et al. (Arch Gen Psychiatry 67(4): 380–387, 2010); however, comparability in the results of different tasks and validity across different age groups remains unclear. We investigated the validity of a newly modified MID task for children (CID) using functional magnetic resonance imaging. The CID comprises the integration of a more age appropriate feedback phase. We focused on reward anticipation and their neural correlates. Twenty healthy young adults completed the MID and the CID. Additionally, 10 healthy children completed the CID. As expected, both paradigms elicited significant ventral and dorsal striatal activity in young adults during reward anticipation. No differential effects of the tasks on reaction times, accuracy rates or on the total amount of gain were observed. Furthermore, the CID elicited significant ventral striatal activity in healthy children. In conclusion, these findings demonstrate evidence for the validity of the CID paradigm. The CID can be recommended for the application in future studies on reward processing in children, adolescents, and in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev 56(2):283–321

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA (2012) Twenty years of functional MRI: the science and the stories. NeuroImage 62(2):575–588

    Article  PubMed  Google Scholar 

  • Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T et al (2009) Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry 66(8):734–742

    Article  CAS  PubMed  Google Scholar 

  • Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW (2004) Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci 24(8):1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Bjork JM, Knutson B, Hommer DW (2008) Incentive elicited striatal activation in adolescent children of alcoholics. Addiction 103(8):1308–1319

    Article  PubMed  Google Scholar 

  • Bjork JM, Smith AR, Chen G, Hommer DW (2010) Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI. PLoS One 5(7):e11440

    Google Scholar 

  • Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R et al (1998) Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 18(3):186–196

    Article  CAS  PubMed  Google Scholar 

  • Chambers RA, Potenza MN (2003) Neurodevelopment, impulsivity, and adolescent gambling. J Gambl Stud 19(1):53–84

    Article  PubMed  Google Scholar 

  • Conners CK, Erhardt D, Sparrow E (1999) Conners’ adult ADHD rating scales (CAARS). Technical Manual. MHS, North Tonawanda

    Google Scholar 

  • Cooper JC, Knutson B (2008) Valence and salience contribute to nucleus accumbens activation. NeuroImage 39(1):538–547

    Article  PubMed  Google Scholar 

  • Cooper JC, Hollon NG, Wimmer GE, Knutson B (2009) Available alternative incentives modulate anticipatory nucleus accumbens activation. Soc Cogn Affect Neurosci 4(4):409–416

    Article  PubMed  Google Scholar 

  • Davidson M, Thomas K, Casey B (2003) Imaging the Developing Brain With fMRI. Ment Retard Dev Disabil Res Rev 9(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, Shohamy D (2008) The cognitive neuroscience of motivation and learning. Soc Cogn 26(5):593–620

    Article  Google Scholar 

  • Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84:3072–3077

    CAS  PubMed  Google Scholar 

  • Delmo C, Weiffenbach O, Gabriel M, Stadler C, Poustka F (2001) Diagnostisches Interview Kiddie-Sads-Present and Lifetime Version (K-SADS-PL). 5. Auflage der deutschen Forschungsversion, erweitert um ICD-10-Diagnostik [5th edition of the German research version with the addition of ICD-10-diagnosis] Frankfurt: Klinik für Psychiatrie und Psychotherapie des Kindes-und Jugendalters, pp 1–241

  • Demurie E, Roeyers H, Baeyens D, Sonuga-Barke E (2011) Common alterations in sensitivity to type but not amount of reward in ADHD and autism spectrum disorders. J Child Psychol Psychiatry 52(11):1164–1173

    Article  PubMed  Google Scholar 

  • DeRusso AL, Fan D, Gupta J, Shelest O, Costa RM, Yin HH (2010) Instrumental uncertainty as a determinant of behavior under interval schedules of reinforcement. Front Integr Neurosci 4:17

    Article  PubMed  Google Scholar 

  • Desmond JE, Annabel Chen S (2002) Ethical issues in the clinical application of fMRI: factors affecting the validity and interpretation of activations. Brain Cogn 50(3):482–497

    Article  PubMed  Google Scholar 

  • Dillon DG, Deveney CM, Pizzagalli DA (2011) From basic processes to real-world problems: how research on emotion and emotion regulation can inform understanding of psychopathology, and vice versa. Emot Rev 3(1):74–82

    Article  PubMed  Google Scholar 

  • DuPaul G, Power T, Anastopoulos A, Reid R (1998) ADHD rating scales-IV: checklists, norms and clinical interpretation. Guilford Press, New York

    Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Ernst M, Nelson EE, Jazbec S, McClure EB, Monk CS, Leibenluft E et al (2005) Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage 25:1279–1291

    Article  PubMed  Google Scholar 

  • Finger EC, Marsh AA, Blair KS, Reid ME, Sims C, Ng P et al (2010) Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am J Psychiatry 168(2):152–162

    Article  PubMed  Google Scholar 

  • Fliessbach K, Rohe T, Linder NS, Trautner P, Elger CE, Weber B (2010) Retest reliability of reward-related BOLD signals. NeuroImage 50(3):1168–1176

    Article  PubMed  Google Scholar 

  • Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G et al (2006) Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26:6885–6892

    Article  CAS  PubMed  Google Scholar 

  • Gotlib IH, Hamilton JP, Cooney RE, Singh MK, Henry ML, Joormann J (2010) Neural processing of reward and loss in girls at risk for major depression. Arch Gen Psychiatry 67(4):380–387

    Article  PubMed  Google Scholar 

  • Guyer AE, Nelson EE, Perez-Edgar K, Hardin MG, Roberson-Nay R, Monk CS et al (2006) Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. J Neurosci 26(24):6399–6405

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35(1):4–26

    Article  PubMed  Google Scholar 

  • Helfinstein SM, Kirwan ML, Benson BE, Hardin MG, Pine DS, Ernst M et al (2012) Validation of a child-friendly version of the Monetary Incentive Delay task. Soc Cogn Affect Neurosci

  • Hollingshead AA (1975) Four-factor index of social status. Department of Sociology, Yale University, New Haven

    Google Scholar 

  • Jarcho JM, Benson BE, Plate RC, Guyer AE, Detloff AM, Pine DS et al (2012) Developmental effects of decision-making on sensitivity to reward: an fMRI study. Dev Cogn Neurosci 2(4):437–447

    Article  PubMed  Google Scholar 

  • Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P et al (1997) Schedule for affective disorders and schizophrenia for school-age children—present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 26:980–988

    Article  Google Scholar 

  • Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B et al (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. NeuroImage 20(2):1086–1095

    Article  PubMed  Google Scholar 

  • Knutson B, Greer S (2008) Anticipatory affect: neural correlates and consequences for choice. Philos Trans Roy Soc B 363:3771–3786

    Article  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159

    Google Scholar 

  • Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport 12(17):3683–3687

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage 18(2):263–272

    Article  PubMed  Google Scholar 

  • McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of fMRI. Neuroscientist 10(3):260–268

    Article  PubMed  Google Scholar 

  • McClure SM, Ericson KM, Laibson DI, Loewenstein G, Cohen JD (2007) Time discounting for primary rewards. J Neurosci 27:5796–5804

    Article  CAS  PubMed  Google Scholar 

  • Nees F, Tzschoppe J, Patrick CJ, Vollstädt-Klein S, Steiner S, Poustka L et al (2012) Determinants of early alcohol use in healthy adolescents: the differential contribution of neuroimaging and psychological factors. Neuropsychopharmacology 37(4):986–995

    Article  PubMed  Google Scholar 

  • O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14(6):769–776

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5):815–826

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Bromberg U, Schneider S, Brassen S, Menz M, Banaschewski T et al (2011) Lower ventral striatal activation during reward anticipation in adolescent smokers. Am J Psychiatry 168(5):540–549

    Article  PubMed  Google Scholar 

  • Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological issues: a theoretical review. NeuroImage 12(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Reyna VF, Brainerd CJ (2011) Dual processes in decision making and developmental neuroscience: a fuzzy-trace model. Dev Rev 31(2–3):180–206

    PubMed  Google Scholar 

  • Ribeiro F, de Mendonca A, Guerreiro M (2006) Mild cognitive impairment: deficits in cognitive domains other than memory. Dement Geriatr Cogn Disord 21(5–6):284–290

    Article  CAS  PubMed  Google Scholar 

  • Ripke S, Hübner T, Mennigen E, Müller KU, Rodehacke S, Schmidt D et al (2012) Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency. Brain Res 1478:36–47

    Article  CAS  PubMed  Google Scholar 

  • Rose EJ, Ross TJ, Salmeron BJ, Lee M, Shakleya DM, Huestis M et al (2012) Chronic exposure to nicotine is associated with reduced reward related activity in the striatum but not the midbrain. Biol Psychiatry 71:206–213

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Peselow E (2009) The neurobiology of addictive disorders. Clin Neuropharmacol 32(5):269–276

    Article  CAS  PubMed  Google Scholar 

  • Scheres A, Milham MP, Knutson B, Castellanos FX (2007) Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry 61(5):720–724

    Article  PubMed  Google Scholar 

  • Schneider S, Peters J, Bromberg U, Brassen S, Miedl SF, Banaschewski T et al (2012) Risk taking and the adolescent reward system: a potential common link to substance abuse. Am J Psychiatry 169(1):39–46

    PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Shad MU, Bidesi AP, Chen L-A, Ernst M, Rao U (2011) Neurobiology of decision making in depressed adolescents: a functional magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 50(6):612–621

    Article  PubMed  Google Scholar 

  • Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9)

  • Spreckelmeyer KN, Krach S, Kohls G, Rademacher L, Irmak A, Konrad K et al (2009) Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Soc Cogn Affect Neurosci 4:158–165

    Article  PubMed  Google Scholar 

  • Staddon JER, Cerutti DT (2003) Operant conditioning. Annu Rev Psychol 54:115–144

    Article  CAS  PubMed  Google Scholar 

  • Taylor MJ, Donner EJ, Pang EW (2012) fMRI and MEG in the study of typical and atypical cognitive development. Clin Neurophysiol 42(1–2):19–25

    CAS  Google Scholar 

  • Van Leijenhorst L, Gunther Moor B, Op de Macks ZA, Rombouts SARB, Westenberg PM, Crone EA (2010a) Adolescent risky decision-making: neurocognitive development of reward and control regions. NeuroImage 51(1):345–355

    Article  PubMed  Google Scholar 

  • Van Leijenhorst L, Zanolie K, Van Meel CS, Westenberg PM, Rombouts SARB, Crone EA (2010b) What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. Cereb Cortex 20(1):61–69

    Article  PubMed  Google Scholar 

  • Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9(12):585–594

    Article  PubMed  Google Scholar 

  • Weiß RH (2006) Grundintelligenztest Skala 2-Revision (CFT 20-R). Hogrefe, Göttingen

    Google Scholar 

  • Wilbertz G, van Elst LT, Delgado MR, Maier S, Feige B, Philipsen A et al (2012) Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage 60(1):353–361

    Article  PubMed  Google Scholar 

  • Wilke M, Holland SK, Altaye M, Gaser C (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. NeuroImage 41:903–913

    Article  PubMed  Google Scholar 

  • Wittchen H-U, Weigel A, Pfister H (1996) DIA-X: Diagnostisches Expertensystem. Swets Test Services, Frankfurt

    Google Scholar 

  • Wittchen H-U, Zaudig M, Fydrich T (1997) Strukturiertes Klinisches Interview für DSM-IV Achse I und Achse II. Handanweisung, Hogrefe

    Google Scholar 

  • Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42(3):509–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all participants and collaborators for supporting this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Kappel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappel, V., Koch, A., Lorenz, R.C. et al. CID: a valid incentive delay paradigm for children. J Neural Transm 120, 1259–1270 (2013). https://doi.org/10.1007/s00702-012-0962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0962-0

Keywords

Navigation