Journal of Neural Transmission

, Volume 120, Issue 5, pp 745–753 | Cite as

Remodeling of the fovea in Parkinson disease

  • B. Spund
  • Y. Ding
  • T. Liu
  • I. Selesnick
  • S. Glazman
  • E. M. Shrier
  • I. Bodis-Wollner
Neurology and Preclinical Neurological Studies - Original Article

Abstract

To quantify the thickness of the inner retinal layers in the foveal pit where the nerve fiber layer (NFL) is absent, and quantify changes in the ganglion cells and inner plexiform layer. Pixel-by-pixel volumetric measurements were obtained via Spectral-Domain optical coherence tomography (SD-OCT) from 50 eyes of Parkinson disease (PD) (n = 30) and 50 eyes of healthy control subjects (n = 27). Receiver operating characteristics (ROC) were used to classify individual subjects with respect to sensitivity and specificity calculations at each perifoveolar distance. Three-dimensional topographic maps of the healthy and PD foveal pit were created. The foveal pit is thinner and broader in PD. The difference becomes evident in an annular zone between 0.5 and 2 mm from the foveola and the optimal (ROC-defined) zone is from 0.75 to 1.5 mm. This zone is nearly devoid of NFL and partially overlaps the foveal avascular zone. About 78 % of PD eyes can be discriminated from HC eyes based on this zone. ROC applied to OCT pixel-by-pixel analysis helps to discriminate PD from HC retinae. Remodeling of the foveal architecture is significant because it may provide a visible and quantifiable signature of PD. The specific location of remodeling in the fovea raises a novel concept for exploring the mechanism of oxidative stress on retinal neurons in PD. OCT is a promising quantitative tool in PD research. However, larger scale studies are needed before the method can be applied to clinical follow-ups.

Keywords

Parkinson disease (PD) Retinal foveal pit Optical coherence tomography (OCT) Receiver operating characteristics (ROC) Dopaminergic neurons Foveal avascular zone (FAZ) 

Supplementary material

702_2012_909_MOESM1_ESM.doc (465 kb)
Supplementary material 1 The standard output of the OCT equipment with the grid centered on the foveola. This illustration represents the recording of a 74-year-old HC. The subject fixates on a central fixation target and the equipment allows the operator to center the measuring grid (see the illustration). Post-recording, some corrections are possible but it is preferable to center the grid close to the central pixel, certainly not more distant than one pixel. Underneath each 0.25 by 0.25 square the volume is measured for thickness at that point. Figure represents the actual output of the OCT equipment, for a 74-year-old healthy Caucasian male. Upper left hand corner: color-coded thickness map of the foveal region, centered on the foveola. Below: a table of full thickness values in each labeled segment of the foveal image. Numbers represent mean thickness values in each perifoveolar ring, as defined by the ETDRS (Early Treatment Diabetic Retinopathy Study) protocol (see text). Top right: color-coded average volumes plotted in each region. Bottom right; the foveolar centered measuring grid with color-coded thickness values. Next to the grid left: an image of the vertical cross section of the fovea through the foveola. Bottom of the grid: the horizontal (temporo-nasal) cross section of the fovea. Many studies calculate macular volumes in the three zones of the EDTRS protocol (top right, above) and measure thickness of the full retina, or measure thickness at selected points of the image, using manual cursors (see text). Our measures reflect volumes in each pixel depicted in the grid. (DOC 465 kb)
702_2012_909_MOESM2_ESM.doc (50 kb)
Supplementary material 2 (DOC 50 kb)

References

  1. Aaker GD, Myung JS, Ehrlich JR et al (2008) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432Google Scholar
  2. Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Documenta Ophthal 1116:137–146CrossRefGoogle Scholar
  3. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132(Pt 5):1128–1145Google Scholar
  4. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord. 17(6):431–436 (Epub 2011 Mar 31)Google Scholar
  5. Bagci AM, Shahidi M, Ansari R et al (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687PubMedCrossRefGoogle Scholar
  6. Biehlmaier O, Alam M, Schmidt WJ (2007) A rat model of Parkinsonism shows depletion of dopamine in the retina. NeurochemInt 50:189–195CrossRefGoogle Scholar
  7. Bodis-Wollner I (1990) Visual deficit related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301PubMedCrossRefGoogle Scholar
  8. Bodis-Wollner I (2009) Retinopathy in Parkinson disease. J Neural Transm 116:1493–1501PubMedCrossRefGoogle Scholar
  9. Bodis-Wollner I (2012) Foveal vision is impaired in Parkinson’s disease. A review. Parkinsonism Relat Disord pii: S1353–8020(12):295–297. doi:10.1016/j.parkreldis.2012.07.012 [Epub ahead of print]
  10. Bodis-Wollner I, Harnois C, Bobak P, Mylin LH (1983) On the possible role oftemporal delays of afferent processing in Parkinson’s disease. J Neural Trans Suppl 19:243–252Google Scholar
  11. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5CrossRefGoogle Scholar
  12. Chui TY, Zhong Z, Song H, Burns SA (2012) Foveal avascular zone and its relationship to foveal pit shape. Optom Vis Sci 89(5):602–610PubMedCrossRefGoogle Scholar
  13. Cubo E, Tedejo RP, Rodriguez Mendez V et al (2010) Retinal thickness in Parkinson’s disease and essential tremor. Mov Disord 25:2461–2462PubMedCrossRefGoogle Scholar
  14. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  15. Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 37:3509–3529PubMedCrossRefGoogle Scholar
  16. Dowling JE, Ehinger B (1978) Synaptic organization of the dopaminergic neurons in the rabbit retina. J Comp Neurol 180:203–220PubMedCrossRefGoogle Scholar
  17. Dubis AM, Hansen BR, Cooper RF et al (2012) The relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53(3):1628PubMedCrossRefGoogle Scholar
  18. Engle RF (1983) Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In: Intriligator MD, Griliches Z (eds) Handbook of econometrics II, pp 796–801. Elsevier. ISBN978-0-444-86185-6Google Scholar
  19. Esteve-Rudd J, Campello L, Herrero MT et al (2010) Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Res 1352:70–82PubMedCrossRefGoogle Scholar
  20. Frederick JM, Rayborn ME, Laties AM et al (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210:65–79PubMedCrossRefGoogle Scholar
  21. Ghilardi MF, Chung E, Bodis-Wollner I et al (1988) Systemic 1-methyl, 4-phenyl 1–2-3-6 tetrahydropyridine (MPTP) administration decreases retinal dopamine concentration in primates. Life Sci 4(3):255–6263CrossRefGoogle Scholar
  22. Ghilardi MF, Marx MS, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364PubMedCrossRefGoogle Scholar
  23. Gottlob I, Weghaupt H, Vass C, Auff E (1989) Effect of levodopa on the human pattern electroretinogram and pattern visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 227:421–427PubMedCrossRefGoogle Scholar
  24. Hajee M, March W, Wolintz A et al (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741PubMedCrossRefGoogle Scholar
  25. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  26. Harnois C, DiPaolo T (1990) Decreased dopamine in the retinas of patients with Parkinson disease. Invest Ophthalmol Vis Sci 31:2473–2475PubMedGoogle Scholar
  27. Hendley ED, Snyder SH (1972) Stereoselectivity of catecholamine uptake in noradrenergic and dopaminergic peripheral organs. Eur J Pharmacol 19:56–66PubMedCrossRefGoogle Scholar
  28. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442PubMedCrossRefGoogle Scholar
  29. Hokoc JN, Mariani AP (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7(9):2785–2793PubMedGoogle Scholar
  30. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  31. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCrossRefGoogle Scholar
  32. Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vis Res 34:2629–2638PubMedCrossRefGoogle Scholar
  33. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vis Res 44:2793–2797PubMedCrossRefGoogle Scholar
  34. La Morgia C, Carbonelli M, Barboni P (2011) Age-related temporal loss of retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Invest Ophthalmol Vis Sci 52. E-Abstract 2984. Eur J Neurol. doi: 10.1111/j.1468-1331.2012.03701.x (Epub ahead of print)
  35. Loduca AL, Zhana CHI, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers with spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855PubMedCrossRefGoogle Scholar
  36. Mariani AP, Hokoc JN (1988) Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey retina. J Comp Neurol 276(1):81–91PubMedCrossRefGoogle Scholar
  37. Martínez-Navarrete GC, Martín-Nieto J, Esteve-Rudd J et al (2007) Alpha synuclein gene expression profile in the retina of vertebrates. Mol Vis 13(949–61):32Google Scholar
  38. Moschos MM et al (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21:24–29PubMedCrossRefGoogle Scholar
  39. Nguyen-Legros J (1998) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10:137–144CrossRefGoogle Scholar
  40. Peppe A, Stanzione P, Pierantozzi M et al (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depends on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382PubMedCrossRefGoogle Scholar
  41. Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126:507–511PubMedCrossRefGoogle Scholar
  42. Sartucci F, Orlandi G, Bonuccelli U, Borghetti D, Murri L, Orsini C et al (2006) Chromaticpattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophycompared with Parkinson's disease. Neurol Sci 26(6):395–401Google Scholar
  43. Stanzione P, Fattapposta F, Tagliati M, D’Alessio C, Marciani MG, Foti A et al (1990) Dopaminergic pharmacological manipulations in normal humans confirm the specificity of the visual (PERG-VEP) and cognitive (P300) electrophysiological alterations in Parkinson’s disease. Electroencephalogr Clin Neurophysiol Suppl 41:216–220Google Scholar
  44. Tagliati M, Bodis-Wollner I, Kovanecz I, and Stanzione P (1994) Spatial frequency tuning of the monkey pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057Google Scholar
  45. Tagliati M, Bodis-Wollner I, Yahr M (1995) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electoenceph Clin Neurophysiol 100:1–11CrossRefGoogle Scholar
  46. Tan JM, Wong ES, Lim KL (2009) Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 11:2119–2134PubMedCrossRefGoogle Scholar
  47. Tick S, Rossant F, Ghorbel I et al (2011) Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 52:5105–5110PubMedCrossRefGoogle Scholar
  48. Wagner-Schuman M et al (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634PubMedCrossRefGoogle Scholar
  49. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108(1):17–40PubMedCrossRefGoogle Scholar
  50. Witkovsky P, Gabriel R, Krizaj D (2008) Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol 510:158–174PubMedCrossRefGoogle Scholar
  51. Wojtkowski M, Bajraszewski T, Gorczynska I et al (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138:412–419PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • B. Spund
    • 3
  • Y. Ding
    • 4
  • T. Liu
    • 4
  • I. Selesnick
    • 4
  • S. Glazman
    • 3
  • E. M. Shrier
    • 1
    • 2
  • I. Bodis-Wollner
    • 1
    • 2
    • 3
  1. 1.Department of OphthalmologyState University of New York (SUNY), Downstate Medical Center (DMC)BrooklynUSA
  2. 2.SUNY Eye InstituteBrooklynUSA
  3. 3.Department of NeurologySUNY, DMCBrooklynUSA
  4. 4.Department of Electrical and Computer EngineeringPolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations