Skip to main content
Log in

Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
  • volume 120pages 813–819 (2013)
Journal of Neural Transmission Aims and scope Submit manuscript

Cite this article


Cortical excitability can be modulated using repetitive transcranial magnetic stimulation (rTMS). Previously, we showed that rTMS combined with cognitive training (rTMS-COG) has positive results in Alzheimer’s disease (AD). The goal of this randomized double-blind, controlled study was to examine the safety and efficacy of rTMS-COG in AD. Fifteen AD patients received 1-h daily rTMS-COG or sham treatment (seven treated, eight placebo), five sessions/week for 6 weeks, followed by biweekly sessions for 3 months. The primary outcome was improvement of the cognitive score. The secondary outcome included improvement in the Clinical Global Impression of Change (CGIC) and Neuropsychiatric Inventory (NPI). There was an improvement in the average ADAS-cog score of 3.76 points after 6 weeks in the treatment group compared to 0.47 in the placebo group and 3.52 points after 4.5 months of treatment, compared to worsening of 0.38 in the placebo (P = 0.04 and P = 0.05, respectively). There was also an improvement in the average CGIC score of 3.57 (after 6 weeks) and 3.67 points (after 4.5 months), compared to 4.25 and 4.29 in the placebo group (mild worsening) (P = 0.05 and P = 0.05, respectively). NPI improved non-significantly. In summary, the NeuroAD system offers a novel, safe and effective therapy for improving cognitive function in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1


  • Ahmed Z, Wieraszko A (2006) Modulation of learning and hippocampal, neuronal plasticity by repetitive transcranial magnetic stimulation (rTMS). Bioelectromagnetics 27:288–294

    Article  PubMed  Google Scholar 

  • Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM (2012) Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol 259:83–92

    Article  PubMed  Google Scholar 

  • Bellgowan PS, Buffalo EA, Bodurka J, Martin A (2009) Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learn Mem 16:433–438

    Article  PubMed  Google Scholar 

  • Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, Marton RG, Rabey JM (2011) Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study. J Neural Transm 118:463–471

    Article  PubMed  CAS  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593. doi:10.1002/14651858.CD005593

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Buck BH, Black SE, Behrmann M, Caldwell C, Bronskill MJ (1997) Spatial- and object-based attentional deficits in Alzheimer’s disease. Relationship to HMPAO-SPECT measures of parietal perfusion. Brain 120:1229–1244

    Article  PubMed  Google Scholar 

  • Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM, Miniussi C (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63:1602–1604

    Article  PubMed  Google Scholar 

  • Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, Miniussi C (2011) Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry 82:794–797

    Article  PubMed  Google Scholar 

  • Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, Lendon C, Shaw H, Bentham P, AD2000 Collaborative Group (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363:2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    Article  PubMed  CAS  Google Scholar 

  • Freitas C, Mondragón-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol 46:611–627

    PubMed  Google Scholar 

  • Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M (1994) Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. NeuroReport 5:1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Guy W (1976) Clinical global impressions. In: ECDEU Assessment Manual for Psychopharmacology, revised. National Institute of Mental Health, Rockville, pp 218–222

  • Harpaz Y, Levkovitz Y, Lavidor M (2009) Lexical ambiguity resolution in Wernicke’s area and its right homologue. Cortex 45:1097–1103

    Article  PubMed  Google Scholar 

  • Hoogendam JM, Ramakers GM, DiLazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:95–118

    Article  PubMed  Google Scholar 

  • Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46:1603–1613

    Article  PubMed  CAS  Google Scholar 

  • Lisanby SH, Luber B, Perera T, Sackeim HS (2000) Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology. Int J Neuropsychopharmacol 3:259–273

    Article  PubMed  Google Scholar 

  • Mantovani A, Lisanby SH (2004) Applications of transcranial magnetic stimulation to therapy in psychiatry. Psychiatric Times 21:1–2

    Google Scholar 

  • Nardone R, Bergmann J, Christova M, Caleri F, Tezzon F, Ladurner G, Trinka E, Golaszewski S (2012) Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review. Int J Alzheimers Dis. Article ID 687909

  • Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–334

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189

    Article  PubMed  CAS  Google Scholar 

  • Rafii MS, Ellis RJ, Corey-Bloom J (2009) Dementing and degenerative disorders. In: Corey-Bloom J, David RB (eds) Clinical adult neurology. Demos Medical, New York, pp 395–417

    Google Scholar 

  • Reichman WE, Fiocco AJ, Rose NS (2010) Exercising the brain to avoid cognitive decline: examining the evidence. Aging Health 6:565–584

    Article  Google Scholar 

  • Rockwood K, Fay S, Gorman M, Carver D, Graham JE (2007) The clinical meaningfulness of ADAS-Cog changes in Alzheimer’s disease patients treated with donepezil in an open-label trial. BMC Neurology 30:7–26

    Google Scholar 

  • Rogalsky C, Matchin W, Hickok G (2008) Broca’s area, sentence comprehension, and working memory: an fMRI Study. Front Hum Neurosci 2:14

    Article  PubMed  Google Scholar 

  • Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141:1356–1364

    PubMed  CAS  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Sitzer DI, Twamley EW, Jeste DV (2006) Cognitive training in Alzheimer’s disease: a meta-analysis of the literature. Acta Psychiatr Scand 114:75–90

    Article  PubMed  CAS  Google Scholar 

  • Spector A, Thorgrimsen L, Woods B, Royan L, Davies S, Butterworth M, Orrell M (2003) Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br J Psychiatry 183:248–254

    Article  PubMed  Google Scholar 

  • Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasisve human brain stimulation. Annu Rev Biomed Eng 9:527–565

    Article  PubMed  CAS  Google Scholar 

  • Zheng XM (2000) Regional cerebral blood flow changes in drug-resistant depressed patients following treatment with transcranial magnetic stimulation: a statistical parametric mapping analysis. Psychiatry Res 100:75–80

    Article  PubMed  CAS  Google Scholar 

Download references


We thank Dr. Ariela Alter (Neuronix Ltd., Yokneam, Israel) for her contribution to the manuscript and Dr. Innesa Bekerman for performing the MRI anatomical determinations.

Conflict of interest

Neuronix Ltd, Yokneam, Israel financially supported this study through The Fund for Medical Research, Development of Infrastructure and Health Services––Assaf Harofeh Medical Center, Israel. The study sponsors supported the study by providing funds. The design, the collection, analysis and interpretation of the data, the writing of the report and the decision to submit the paper were the entire responsibility of the corresponding author and the co-authors. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. Prof. Rabey (the corresponding author) is a consultant for Neuronix Ltd.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jose M. Rabey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rabey, J.M., Dobronevsky, E., Aichenbaum, S. et al. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J Neural Transm 120, 813–819 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: