Journal of Neural Transmission

, Volume 120, Issue 3, pp 413–422 | Cite as

Functional evaluation of central cholinergic circuits in patients with Parkinson’s disease and REM sleep behavior disorder: a TMS study

  • Raffaele Nardone
  • Jürgen Bergmann
  • Francesco Brigo
  • Monica Christova
  • Alexander Kunz
  • Martin Seidl
  • Frediano Tezzon
  • Eugen Trinka
  • Stefan Golaszewski
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Central cholinergic dysfunction has been reported in patients with Parkinsonʼs disease (PD) and hallucinations by evaluating short latency afferent inhibition (SAI), a transcranial magnetic stimulation protocol which gives the possibility to test an inhibitory cholinergic circuit in the human brain. REM sleep behavior disorder (RBD) was also found to be associated with cognitive impairment in PD patients. The objective of the study was to assess the cholinergic function, as measured by SAI, in PD patients with RBD (PD-RBD) and PD patients without RBD (PD-nRBD). We applied the SAI technique in 10 PD-RBD patients, in 13 PD-nRBD patients and in 15 age-matched normal controls. All PD patients and control subjects also underwent a comprehensive battery of neuropsychological tests. Mean SAI was significantly reduced in PD-RBD patients when compared with PD-nRBD patients and controls. Neuropsychological examination showed mild cognitive impairment in 9 out of the 10 PD-RBD patients, and in 5 out of the 13 PD-nRBD. SAI values correlated positively with neuropsychological tests measuring episodic verbal memory, executive functions, visuoconstructional and visuoperceptual abilities. Similar to that previously reported in the idiopathic form of RBD, SAI abnormalities suggest a cholinergic dysfunction in PD patients who develop cognitive impairment, and present findings indicate that RBD is an important determinant of MCI in PD.

Keywords

Parkinsonʼs disease REM sleep behavior disorder Transcranial magnetic stimulation Short latency afferent inhibition 

References

  1. American Academy of Sleep Medixine, Task Forse Chair; Hauri PJ, Chairman (2005) The international classification of sleep disorders: diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  2. Arnulf I, Bonnet AM, Damier P, Bejjani BP, Seilhean D, Derenne JP, Agid Y (2000) Hallucinations, REM sleep, and Parkinsonʼs disease: a medical hypothesis. Neurology 55:281–288PubMedCrossRefGoogle Scholar
  3. Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320PubMedCrossRefGoogle Scholar
  4. Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Hirata K, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Rodriguez G, Romani GL, Salinari S, Rossini PM (2006) Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 117:252–268PubMedCrossRefGoogle Scholar
  5. Beck AT, Steer RA, Brown GK (1996) The Beck depression inventory, 2nd edn. The Psychological Corporation, San AntonioGoogle Scholar
  6. Berridge CW, Page ME, Valentino RJ, Foote SL (1993) Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55:381–393PubMedCrossRefGoogle Scholar
  7. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE (2001) Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 16:622–630PubMedCrossRefGoogle Scholar
  8. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, Mathis ChA, Davis JG, Moore RY, Dekosky ST (2006) Cognitive correlates of cortical cholinergic denervation in Parkinsonʼs disease and Parkinsonian dementia. J Neurol 253:242–247PubMedCrossRefGoogle Scholar
  9. Braak H, Rüb U, Jansen Steur EN, Del Tredici K, de Vos RA (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64:1404–1410PubMedCrossRefGoogle Scholar
  10. Comella CL, Nardine TM, Diederich NJ, Stebbins GT (1998) Sleep-related violence, injury, and REM sleep behavior disorder in Parkinsonʼs disease. Neurology 51:526–529PubMedCrossRefGoogle Scholar
  11. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461PubMedCrossRefGoogle Scholar
  12. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397PubMedCrossRefGoogle Scholar
  13. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, Dileone M, Nicoletti R, Pasqualetti P, Tonali PA (2003) Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol 547:485–496PubMedCrossRefGoogle Scholar
  14. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Bentivoglio AR, Tonali A (2004a) Normal or enhanced short-latency afferent inhibition in Parkinsonʼs disease? Brain 127:E8PubMedCrossRefGoogle Scholar
  15. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004b) Motor cortex excitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559PubMedCrossRefGoogle Scholar
  16. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Ghirlanda S, Ranieri F, Gainotti G, Tonali (2005a) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76:1064–1069Google Scholar
  17. Di Lazzaro V, Oliviero A, Saturno E, Di leone M, Pilato F, Nardone R, Ranieri F, Musumeci G, Fiorilla T, Tonali P (2005b) Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol 564:661–668PubMedCrossRefGoogle Scholar
  18. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U (2005c) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569:315–323PubMedCrossRefGoogle Scholar
  19. Di Lazzaro V, Pilato F, Dileone M, Saturno E, Oliviero A, Marra C, Daniele A, Ranieri F, Gainotti G, Tonali PA (2006) In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 66:1111–1113PubMedCrossRefGoogle Scholar
  20. Di Lazzaro V, Pilato F, Dileone M, Saturno E, Profice P, Marra C, Daniele A, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2007) Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 37(2):422–429PubMedCrossRefGoogle Scholar
  21. Emre M (2003) Dementia associated with Parkinsonʼs disease. Lancet Neurol 2:229–237PubMedCrossRefGoogle Scholar
  22. Fahn S, Elton RL, members of the UPDRS Development Committee. Unified Parkinson’s Disease Rating Scale (1987) In: Fahn S, Marsden CD, Calne DB, Liebermann A (eds) Recent developments in Parkinson’s disease. Macmillan Health Care Information, Florham Park, pp 153–163Google Scholar
  23. Fantini ML, Gagnon JF, Petit D, Rompré S, Décary A, Carrier J, Montplaisir J (2003) Slowing of electroencephalogram in rapid eye movement sleep behavior disorder. Ann Neurol 53(6):774–780PubMedCrossRefGoogle Scholar
  24. Ferini-Strambi L, Di Gioia MR, Castronovo V, Oldani A, Zucconi M, Cappa SF (2004) Neuropsychological assessment in idiopathic REM sleep behavior disorder (RBD): does the idiopathic form of RBD really exist? Neurology 62(1):41–45PubMedCrossRefGoogle Scholar
  25. Foltynie T, Brayne CE, Robbins TW, Barker RA (2004) The cognitive ability of an incident cohort of Parkinsonʼs patients in the UK. The CamPaIGN study. Brain 127:550–560PubMedCrossRefGoogle Scholar
  26. Fujiki M, Hikawa T, Abe T, Ishii K, Kobayashi H (2006) Reduced short latency afferent inhibition in diffuse axonal injury patients with memory impairment. Neurosci Lett 405:226–230PubMedCrossRefGoogle Scholar
  27. Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompré S, Carrier J, Montplaisir J (2002a) REM sleep behavior disorder and REM sleep without atonia in Parkinsonʼs disease. Neurology 59:585–589PubMedCrossRefGoogle Scholar
  28. Gagnon JF, Montplaisir J, Bédard MA (2002b) Les troubles du sommeil paradoxal dans la maladie de Parkinson. Rev Neurol 158:135–152PubMedGoogle Scholar
  29. Gagnon JF, Fantini ML, Bedard MA, Petit D, Carrier J, Rompré S, Décary A, Panisset M, Montplaisir J (2004) Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. Neurology 62:401–406PubMedCrossRefGoogle Scholar
  30. Glenville M, Wilkinson RT (1979) Portable devices for measuring performance in the field: the effects of sleep deprivation and might shift on the performance of computer operators. Ergonomics 22:927–933PubMedCrossRefGoogle Scholar
  31. Green J, McDonald WM, Vitek JL, Evatt M, Freeman A, Haber M, Bakay RA, Triche S, Sirockman B, DeLong MR (2002) Cognitive impairments in advanced PD without dementia. Neurology 59:1320–1324PubMedCrossRefGoogle Scholar
  32. Helkala EL, Laulumaa V, Soininen H, Riekkinen PJ (1988) Recall and recognition memory in patients with Alzheimerʼs and Parkinsonʼs diseases. Ann Neurol 24:214–217PubMedCrossRefGoogle Scholar
  33. Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239:81–105PubMedCrossRefGoogle Scholar
  34. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, Jacobs AH, Herholz K, Heiss WD (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722PubMedCrossRefGoogle Scholar
  35. Inglis WL, Olmstead MC, Robbins TW (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav Brain Res 123:117–131PubMedCrossRefGoogle Scholar
  36. Iranzo A, Molinuevo JL, Santamaria J, Serradell M, Martí MJ, Valldeoriola F, Tolosa E (2006) Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 5:572–577PubMedCrossRefGoogle Scholar
  37. Janvin C, Aarsland D, Larsen JP, Hugdahl K (2003) Neuropsychological profile of patients with Parkinsonʼs disease without dementia. Dement Geriatr Cogn Disord 15:126–131PubMedCrossRefGoogle Scholar
  38. Janvin CC, Larsen JP, Aarsland D, Hugdahl K (2006) Subtypes of mild cognitive impairment in Parkinson’s disease. Mov Disord 21(9):1343–1349PubMedCrossRefGoogle Scholar
  39. Jones BE (2000) Basic mechanisms of sleep–wake states. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp 134–154Google Scholar
  40. Jouvet M, Delorme F (1965) Locus coeruleus et sommeil paradoxal. C R Soc Biol 159:895–899Google Scholar
  41. Kleiner S, Bringmann A (1996) Nucleus basalis magnocellularis and pedunculopontine tegmental nucleus: control of the slow EEG waves in rats. Arch Ital Biol 134:153–167PubMedGoogle Scholar
  42. Kimura J, Daube J, Burke D, Hallett M, Cruccu G, Ongerboer de Visser BW, Yanagisawa N, Shimamura M, Rothwell J (1994) Human reflexes and late responses. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 40:393–403Google Scholar
  43. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMedGoogle Scholar
  44. Levin BE, Llabre MM, Reisman S, Weiner WJ, Sanchez-Ramos J, Singer C, Brown MC (1991) Visuospatial impairment in Parkinsonʼs disease. Neurology 41:365–369PubMedCrossRefGoogle Scholar
  45. Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological assessment, 4th edn. Oxford University Press, New YorkGoogle Scholar
  46. Mahowald MW, Schenck CH (2000) REM sleep parasomnias. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp 724–741Google Scholar
  47. Manganelli F, Vitale C, Santangelo G, Pisciotta C, Iodice R, Cozzolino A, Dubbioso R, Picillo M, Barone P, Santoro L (2009) Functional involvement of central cholinergic circuits and visual hallucinations in Parkinsonʼs disease. Brain 132(Pt 9):2350–2355PubMedCrossRefGoogle Scholar
  48. Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codecà C, Sancesario G, Bernardi G, Koch G (2009) Dopamine modulates cholinergic cortical excitability in Alzheimerʼs disease patients. Neuropsychopharmacology 34(10):1328–2323Google Scholar
  49. Massicotte-Marquez J, Décary A, Gagnon JF, Vendette M, Mathieu A, Postuma RB, Carrier J, Montplaisir J (2008) Executive dysfunction and memory impairment in idiopathic REM sleep behavior disorder. Neurology 70(15):1250–1257PubMedCrossRefGoogle Scholar
  50. Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65:1239–1245PubMedCrossRefGoogle Scholar
  51. Nardone R, Florio I, Lochner P, Tezzon F (2005) Cholinergic cortical circuits in Parkinsonʼs disease and in progressive supranuclear palsy: a transcranial magnetic stimulation study. Exp Brain Res 163:128–131PubMedCrossRefGoogle Scholar
  52. Nardone R, Bergmann J, Christova M, Caleri F, Tezzon F, Ladurner G, Trinka E, Golaszewski S (2012a) Short latency afferent inhibition differs among the subtypes of mild cognitive impairment. J Neural Transm 119(4):463–471PubMedCrossRefGoogle Scholar
  53. Nardone R, Bergmann J, Kunz A, Christova M, Brigo F, Tezzon F, Trinka E, Golaszewski S (2012b) Cortical afferent inhibition is reduced in patients with idiopathic REM sleep behavior disorder and cognitive impairment. Sleep Med 13(7):919–925PubMedCrossRefGoogle Scholar
  54. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280PubMedCrossRefGoogle Scholar
  55. Postuma RB, Gagnon JF, Vendette M, Montplaisir JY (2009) Idiopathic REM sleep behavior disorder in the transition to denerative disease. Mov Disord 24(15):2225–2232PubMedCrossRefGoogle Scholar
  56. Postuma RB, Bertrand JA, Montplaisir J, Desjardins C, Vendette M, Rios Romenets S, Panisset M, Gagnon JF (2012) Rapid eye movement sleep behavior disorder and risk of dementia in Parkinsonʼs diesease: a prospective study. Mov Disord 27(6):720–726PubMedCrossRefGoogle Scholar
  57. Petersen RC, Morris JC (2005) Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 62(7):1160–1163PubMedCrossRefGoogle Scholar
  58. Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15:85–90PubMedCrossRefGoogle Scholar
  59. Rossini PM, Barker T, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application: report of IFCN committee. Electroenceph Clin Neurophysiol 91:79–92PubMedCrossRefGoogle Scholar
  60. Rowe JB, Hughes L, Ghosh BC, Eckstein D, Williams-Gray CH, Fallon S, Barker RA, Owen AM (2008) Parkinson’s disease and dopaminergic therapy—differential effects on movement, reward and cognition. Brain 131(Pt 8):2094–2105PubMedCrossRefGoogle Scholar
  61. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 26:1883–1894CrossRefGoogle Scholar
  62. Schenck CH, Bundlie SR, Mahowald MW (1996a) Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder. Neurology 46:388–393PubMedCrossRefGoogle Scholar
  63. Schenck CH, Garcia-Rill E, Skinner RD, Anderson ML, Mahowald MW (1996b) A case of REM sleep behavior disorder with autopsy-confirmed Alzheimerʼs disease: post-mortem brain stem histochemical analyses. Biol Psychiatry 40:422–425PubMedCrossRefGoogle Scholar
  64. Steckler T, Inglis W, Winn P, Sahgal A (1994) The pedunculopontine tegmental nucleus: a role in cognitive processes? Brain Res Rev 19:298–318PubMedCrossRefGoogle Scholar
  65. Terzaghi M, Sinforiani E, Zucchella C, Zambrelli E, Pasotti C, Rustioni V, Manni R (2008) Cognitive performance in REM sleep behaviour disorder: a possible early marker of neurodegenerative disease? Sleep Med 9(4):343–351PubMedCrossRefGoogle Scholar
  66. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513PubMedCrossRefGoogle Scholar
  67. Turner RS, D’Amato CJ, Chervin RD, Blaivas M (2000) The pathology of REM sleep behavior disorder with comorbid Lewy body dementia. Neurology 55:1730–1732PubMedCrossRefGoogle Scholar
  68. Uchiyama M, Isse K, Tanaka K, Yokota N, Hamamoto M, Aida S, Ito Y, Yoshimura M, Okawa M (1995) Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 45:709–712PubMedCrossRefGoogle Scholar
  69. Vendette M, Gagnon JF, Décary A, Massicotte-Marquez J, Postuma RB, Doyon J, Panisset M, Montplaisir J (2007) REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology 69(19):1843–1849PubMedCrossRefGoogle Scholar
  70. Wilkinson RT, Houghton D (1975) Portable four-choise reaction timewith magnetic tape memory. Behav Res Methods Instum 7:441–446CrossRefGoogle Scholar
  71. Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferease Vall58Met genotyper influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27(18):4832–4838PubMedCrossRefGoogle Scholar
  72. Winn P (1998) Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: a short theoretical review. Brain Res Bull 47:551–563PubMedCrossRefGoogle Scholar
  73. Ziemann U, Lonnecker S, Steinhoff BH, Paulus W (1996) Effects of antiepileptics drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378PubMedCrossRefGoogle Scholar
  74. Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell JC (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Raffaele Nardone
    • 1
    • 2
  • Jürgen Bergmann
    • 3
  • Francesco Brigo
    • 2
    • 4
  • Monica Christova
    • 5
  • Alexander Kunz
    • 1
  • Martin Seidl
    • 1
  • Frediano Tezzon
    • 2
  • Eugen Trinka
    • 1
  • Stefan Golaszewski
    • 1
  1. 1.Department of NeurologyChristian Doppler Klinik, Paracelsus Medical UniversitySalzburgAustria
  2. 2.Department of NeurologyFranz Tappeiner HospitalMeran/oItaly
  3. 3.Neuroscience InstituteChristian Doppler KlinikSalzburgAustria
  4. 4.Department of Neurological, Neuropsychological, Morphological and Movement SciencesUniversity of VeronaVeronaItaly
  5. 5.Department of PhysiologyMedical University of GrazGrazAustria

Personalised recommendations