Skip to main content

Advertisement

Log in

Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease

Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder that leads to a progressive decline in a person’s memory and ability to communicate and carry out daily activities. The brain pathology in AD is characterized by extensive neuronal loss, particularly of cholinergic neurons, intracellular neurofibrillary tangles composed of the tau protein (NFTs) and extracellular deposition of plaques composed of β-amyloid (Aβ), a cleavage product of the amyloid precursor protein (APP). These two insoluble protein aggregates are accompanied by a chronic inflammatory response and extensive oxidative damage. Whereas dys-regulation of APP expression or processing appears to be important for the familial, early-onset form of AD, controversy exists between the “Baptists” (in favour of Aβ) and the “Tauists” (in favour of tau) as to which of these two protein dysfunctions occur at the earliest stages or are the most important contributors to the disease process in sporadic AD. However, more and more “non-amyloid” and “non-tau” causes have been proposed, including, glycation, inflammation, oxidative stress and dys-regulation of the cell cycle. However, to get an insight into the ultimate cause of AD, and to prove that any drug target is valuable in AD, disease-relevant models giving insight into the pathogenic processes in AD are urgently needed. In the absence of a good animal model for sporadic AD, we propose in this review that induced pluripotent stem cells, derived from dermal fibroblasts of AD patients, and differentiated into cholinergic neurons, might be a promising novel tool for disease modelling and drug discovery for the sporadic form of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Aalten P, Verhey FR, Boziki M, Brugnolo A, Bullock R, Byrne EJ, Camus V, Caputo M et al (2008) Consistency of neuropsychiatric syndromes across dementias: results from the European Alzheimer Disease Consortium. Part II. Dement Geriatr Cogn Disord 25:1–8

    Article  PubMed  Google Scholar 

  • Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, Donnelly PS, Cappai R et al (2011) Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE 6:17669

    Article  Google Scholar 

  • Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    Article  PubMed  Google Scholar 

  • Arendt T, Bruckner MK, Mosch B, Losche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177:15–20

    Article  PubMed  Google Scholar 

  • Bareggi SR, Cornelli U (2012) Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther 18:41–46

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA (2011) The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 29:802–811

    Article  PubMed  Google Scholar 

  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol Aging 25:713–718 (discussion 743–716)

    Article  PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  PubMed  CAS  Google Scholar 

  • Bush AI (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 23:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Griffin S, Münch G, Pasinetti GM (2002) Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 4:193–201

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Smith MA (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J Pathol 224:147–152

    Article  PubMed  CAS  Google Scholar 

  • Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Wollmer MA, Hoerndli F, Münch G, Kuhla B, Rogaev EI, Tsolaki M, Papassotiropoulos A et al (2004) Role for glyoxalase I in Alzheimer’s disease. Proc Natl Acad Sci USA 101:7687–7692

    Article  PubMed  CAS  Google Scholar 

  • Chung HC, Lin RC, Logan GJ, Alexander IE, Sachdev PS, Sidhu KS (2012) Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles. Stem Cells Dev 21:206–216

    Article  PubMed  CAS  Google Scholar 

  • Czirr E, Weggen S (2006) Gamma-secretase modulation with Aβ42-lowering nonsteroidal anti-inflammatory drugs and derived compounds. Neuro-degenerative Dis 3:298–304

    CAS  Google Scholar 

  • Dasilva KA, Aubert I, McLaurin J (2006) Vaccine development for Alzheimer’s disease. Curr Pharm Des 12:4283–4293

    Article  PubMed  CAS  Google Scholar 

  • Ebben JD, Zorniak M, Clark PA, Kuo JS (2011) Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg 76:270–275

    Article  PubMed  Google Scholar 

  • Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20:509–516

    PubMed  CAS  Google Scholar 

  • Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS et al (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–712

    Article  PubMed  Google Scholar 

  • Fuller S, Steele M, Munch G (2010) Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutat Res 690:40–49

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Crowther RA, Cohen P, Vanmechelen E, Probst A, Gotz J et al (1995a) Tau protein in Alzheimer’s disease. Biochem Soc Trans 23:80–85

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Crowther RA, Vanmechelen E, Probst A, Gotz J, Burki K et al (1995b) Molecular dissection of the paired helical filament. Neurobiol Aging 16:325–334

    Article  PubMed  CAS  Google Scholar 

  • Golde TE, Schneider LS, Koo EH (2011) Anti-Aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69:203–213

    Article  PubMed  CAS  Google Scholar 

  • Gotz J, Lim YA, Ke YD, Eckert A, Ittner LM (2010) Dissecting toxicity of tau and beta-amyloid. Neurodegener Dis 7:10–12

    Article  PubMed  Google Scholar 

  • Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929

    PubMed  CAS  Google Scholar 

  • Hayden EC (2011) Stem cells: the growing pains of pluripotency. Nature 473:272–274

    Article  PubMed  CAS  Google Scholar 

  • Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther 113:154–164

    Article  PubMed  CAS  Google Scholar 

  • Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340

    Article  PubMed  CAS  Google Scholar 

  • Huber A, Stuchbury G, Burkle A, Burnell J, Münch G (2006) Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Des 12:705–717

    Article  PubMed  CAS  Google Scholar 

  • Imbimbo BP, Giardina GA (2011) γ-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem 11:1555–1570

    Article  PubMed  CAS  Google Scholar 

  • Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220

    PubMed  CAS  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53

    Article  PubMed  CAS  Google Scholar 

  • Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH (2012) Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol 25:125–130

    Article  PubMed  CAS  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  PubMed  CAS  Google Scholar 

  • Krautwald M, Münch G (2010) Advanced glycation end products as biomarkers and gerontotoxins—a basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol 45:744–751

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B, Loske C, Garcia De Arriba S, Schinzel R, Huber J, Münch G (2004) Differential effects of “Advanced glycation endproducts” and beta-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y. J Neural Transm 111:427–439

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B, Haase C, Flach K, Luth HJ, Arendt T, Münch G (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 282:6984–6991

    Article  PubMed  CAS  Google Scholar 

  • Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Münch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267:4171–4178

    Article  PubMed  CAS  Google Scholar 

  • Maczurek A, Shanmugam K, Munch G (2008) Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer’s disease. Ann NY Acad Sci 1126:147–151

    Article  PubMed  CAS  Google Scholar 

  • Malpass K (2011) Parkinson disease: induced pluripotent stem cells—a new in vitro model to investigate alpha-synuclein dysfunction in Parkinson disease. Nat Rev Neurol 7:536

    Article  PubMed  Google Scholar 

  • Münch G, Robinson SR (2002) Potential neurotoxic inflammatory responses to Aβ vaccination in humans. J Neural Transm 109:1081–1087

    Article  PubMed  Google Scholar 

  • Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143

    Article  PubMed  Google Scholar 

  • Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA et al (1998) Alzheimer’s disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461

    Article  PubMed  Google Scholar 

  • Murrell W, Wetzig A, Donnellan M, Feron F, Burne T, Meedeniya A, Kesby J, Bianco J et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192

    Article  PubMed  CAS  Google Scholar 

  • Navarrete LP, Perez P, Morales I, Maccioni RB (2011) Novel drugs affecting tau behavior in the treatment of Alzheimer’s disease and tauopathies. Curr Alzheimer Res 8:678–685

    Article  PubMed  CAS  Google Scholar 

  • Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A (2011) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7:e1002085

    Article  PubMed  CAS  Google Scholar 

  • O’Connor MD, Kardel MD, Eaves CJ (2011) Functional assays for human embryonic stem cell pluripotency. Methods Mol Biol 690:67–80

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554

    Article  PubMed  CAS  Google Scholar 

  • Panza F, Frisardi V, Imbimbo BP, D’Onofrio G, Pietrarossa G, Seripa D, Pilotto A, Solfrizzi V (2010) Bapineuzumab: anti-beta-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2:767–782

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  • Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146:359–371

    Article  PubMed  CAS  Google Scholar 

  • Rahmadi A, Steiner N, Münch G (2011) Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med 49:385–391

    Article  PubMed  CAS  Google Scholar 

  • Retz W, Gsell W, Münch G, Rosler M, Riederer P (1998) Free radicals in Alzheimer’s disease. J Neural Transm Suppl 54:221–236

    PubMed  CAS  Google Scholar 

  • Riederer P, Hoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm 113:1671–1677

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR, Bishop GM, Lee HG, Münch G (2004) Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging 25:609–615

    Article  PubMed  CAS  Google Scholar 

  • Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24:167–176

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  PubMed  CAS  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4:124ra129.

    Google Scholar 

  • Sidhu KS (2011) New approaches for the generation of induced pluripotent stem cells. Expert Opin Biol Ther 11:569–579

    Article  PubMed  CAS  Google Scholar 

  • Smith AD (2010) Why are drug trials in Alzheimer’s disease failing? Lancet 376:1466

    Article  PubMed  Google Scholar 

  • Song F, Poljak A, Smythe GA, Sachdev P (2009) Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res Rev 61:69–80

    Article  PubMed  CAS  Google Scholar 

  • Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  PubMed  CAS  Google Scholar 

  • Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106:15720–15725

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Thal DR, Rub U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  • Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ 2006:re1.

  • Thome J, Kornhuber J, Münch G, Schinzel R, Taneli Y, Zielke B, Rosler M, Riederer P (1996) New hypothesis on etiopathogenesis of Alzheimer syndrome. Advanced glycation end products (AGEs). Nervenarzt 67:924–929

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J et al (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94:2025–2030

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela MJ, Dean SK, Sachdev P, Tuch BE, Sidhu KS (2008) Neural precursors from canine skin: a new direction for testing autologous cell replacement in the brain. Stem Cells Dev 17:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Touboul T, Brown S, Cho C, Bilican B, Alexander M, Cedervall J, Chandran S et al (2009a) Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27:2655–2666

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M et al (2009b) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS ONE 4:6082

    Article  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Wan HI, Jacobsen JS, Rutkowski JL, Feuerstein GZ (2009) Translational medicine lessons from flurizan’s failure in Alzheimer’s disease (AD) trial: implication for future drug discovery and development for AD. Clin Transl Sci 2:242–247

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Huang K, Shen Y, Xue Z, Cai C, Horvath S, Fan G (2011) Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells. Stem Cells Dev 20:1937–1950

    Article  PubMed  CAS  Google Scholar 

  • Weisman D, Hakimian E, Ho GJ (2006) Interleukins, inflammation, and mechanisms of Alzheimer’s disease. Vitam Horm 74:505–530

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Luth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Münch G (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539

    Article  PubMed  CAS  Google Scholar 

  • Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K et al (2011) Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS ONE 6:e25788

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Riederer for his brilliant scientific ideas and valuable mentorship in his long and distinguished scientific career. We gratefully acknowledge the grant support of the National Health and Medical Research Council (Grant IDs: 436797, 606543, 1046227) and Alzheimer’s Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, L., Sidhu, K., Poljak, A. et al. Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm 120, 103–111 (2013). https://doi.org/10.1007/s00702-012-0839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0839-2

Keywords

Navigation