Skip to main content

Advertisement

Log in

Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders

  • Dementias - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Recent research suggests cell-to-cell transfer of pathogenic proteins such as tau and α-synuclein may play a role in neurodegeneration. Pathogenic spread along neural pathways may give rise to specific spatial patterns of the neuronal cytoplasmic inclusions (NCI) characteristic of these disorders. Hence, the spatial patterns of NCI were compared in four tauopathies, viz., Alzheimer’s disease, Pick’s disease, corticobasal degeneration, and progressive supranuclear palsy, two synucleinopathies, viz., dementia with Lewy bodies and multiple system atrophy, the ‘fused in sarcoma’ (FUS)-immunoreactive inclusions in neuronal intermediate filament inclusion disease, and the transactive response DNA-binding protein (TDP-43)-immunoreactive inclusions in frontotemporal lobar degeneration, a TDP-43 proteinopathy (FTLD-TDP). Regardless of molecular group or morphology, NCI were most frequently aggregated into clusters, the clusters being regularly distributed parallel to the pia mater. In a significant proportion of regions, the regularly distributed clusters were in the size range 400–800 μm, approximating to the dimension of cell columns associated with the cortico-cortical pathways. The data suggest that cortical NCI in different disorders exhibit a similar spatial pattern in the cortex consistent with pathogenic spread along anatomical pathways. Hence, treatments designed to protect the cortex from neurodegeneration may be applicable across several different disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong RA (1993a) Is the clustering of neurofibrillary tangles in Alzheimer’s patients related to the cells of origin of specific cortico-cortical projections? Neurosci Lett 160:57–60

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA (1993b) The usefulness of spatial pattern analysis in understanding the pathogenesis of neurodegenerative disorders, with special reference to plaque formation in Alzheimer’s disease. Neurodegeneration 2:73–80

    Google Scholar 

  • Armstrong RA (1997) Analysis of spatial patterns in histological sections of brain tissue. J Neurosci Methods 73:141–147

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA (2003) Quantifying the pathology of neurodegenerative disorders: quantitative measurements, sampling strategies and data analysis. Histopathology 42:521–529

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA (2006) Methods of studying the planar distribution of objects in histological sections of brain tissue. J Microsc (Oxf) 221:153–158

    Article  CAS  Google Scholar 

  • Armstrong RA (2007) Measuring the spatial arrangement patterns of pathological lesions in histological sections of brain tissue. Folia Neuropathol 44:229–237

    Google Scholar 

  • Armstrong RA (2008) Clustering and periodicity of neurofibrillary tangles in the upper and lower cortical laminae in Alzheimer’s disease. Folia Neuropathol 46:26–31

    PubMed  Google Scholar 

  • Armstrong RA (2009a) Quantitative methods in neuropathology. Folia Neuropathol 48:217–230

    Google Scholar 

  • Armstrong RA (2009b) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47:289–299

    PubMed  CAS  Google Scholar 

  • Armstrong RA, Cairns NJ (2009) Clustering and spatial correlations of the neuronal cytoplasmic inclusions, astrocytic plaques and ballooned neurons in corticobasal degeneration. J Neural Transm 116:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (1997) Dementia with Lewy bodies: clustering of Lewy bodies in human patients. Neurosci Lett 224:41–44

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (1998) Clustering of Pick bodies in cases of Pick’s disease. Neurosci Lett 242:81–84

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, Lantos PL, Cairns NJ (2001) What does the study of spatial patterns of pathological lesions tell us about the pathogenesis of neurodegerative disorders. Neuropathology 21:1–12

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (2002) Are pathological lesions in neurodegenerative disorders the cause or the effect of the degeneration? Neuropathology 22:114–127

    Article  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (2006a) Multiple system atrophy: topographic distribution of the α-synuclein associated pathological changes. Parkinsonism Rel Disord 12:356–362

    Article  CAS  Google Scholar 

  • Armstrong RA, Kerty E, Skullerud K, Cairns NJ (2006b) Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using α-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm 113:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, Lantos PL, Cairns NJ (2007) Spatial topography of the neurofibrillary tangles in cortical and subcortical regions in progressive supranuclear palsy. Parkinsonism Rel Disord 13:50–54

    Article  Google Scholar 

  • Armstrong RA, Lantos PL, Cairns NJ (2008) What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease? Neuropathology 28:351–365

    Article  PubMed  Google Scholar 

  • Armstrong RA, Ellis W, Hamilton RL, Mackenzie IRA, Hedreen J, Gearing M, Montine T, Vonsattel J-P, Head E, Lieberman AP, Cairns NJ (2010) Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm 117:227–239

    Article  PubMed  Google Scholar 

  • Armstrong RA, Gearing M, Bigio EH, Cruz-Sanchez FF, Duyckaerts C, Mackenzie IRA, Perry RH, Skullerud K, Yokoo H, Cairns NJ (2011a) The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease. Acta Neuropathol 121:219–228

    Article  PubMed  Google Scholar 

  • Armstrong RA, Gearing M, Bigio EH, Cruz-Sanchez FF, Duyckaerts C, Mackenzie IRA, Perry RH, Skullerud K, Yokoo H, Cairns NJ (2011b) Spatial patterns of FUS-immunoreactive neuronal cytoplasmic inclusions (NCI) in neuronal intermediate filament inclusion disease. J Neural Transm 118:1651–1657

    Article  PubMed  Google Scholar 

  • Bigio EH, Brown DF, White CL (1999) Progressive supranuclear palsy with dementia: cortical pathology. J Neuropath Exp Neurol 58:359–364

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  • Cairns NJ, Zhukareva V, Uryu K, Zhang B, Bigio E, Mackenzie IRA, Gearing M, Duyckaerts C, Yokoo H, Nakazato Y, Jaros E, Perry RH, Lee VMY, Trojanowski JQ (2004a) α-Internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 164:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Jaros E, Perry RH, Armstrong RA (2004b) Temporal lobe pathology of human patients with neurofilament inclusion disease. Neurosci Lett 354:245–247

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Grossman M, Arnold SE, Burn DJ, Jaros E, Perry RH, Duyckaerts C, Stankoff B, Pillon B, Skullerud K, Cruz-Sanchez FF, Bigio EH, Mackenzie IRA, Gearing M, Juncos JL, Glass JD, Yokoo H, Nakazato Y, Mosaheb S, Thorpe JR, Uryu K, Lee VM-Y, Trojanowski JQ (2004c) Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease (NIFID). Neurology 63:1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VMY, Hatanpaa KJ, White CL, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DMA (2007) Neuropathologic diagnostic and nosological criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  Google Scholar 

  • Davidson Y, Kelley T, Mackenzie IRA, Pickering Brown S, Du Plessis D, Neary D, Snowden JS, Mann DMA (2007) Ubiquinated pathological lesions in frontotemporal lobar degeneration contain TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533

    Article  PubMed  CAS  Google Scholar 

  • De Lacoste M, White CL (1993) The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiol Aging 14:1–16

    Article  PubMed  Google Scholar 

  • Dickson DW (1999) Neuropathological differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 246(Supp 2):6–15

    Article  Google Scholar 

  • Forman MS, Trojanowski JQ, Lee VM-Y (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Gilman S, Low PA, Quinn N, Albanese A, Ben-Schlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Roberstson D, Schatz I, Wenning GK (1998) Consensus statement on the diagnosis of multiple system atrophy. J Auton Nerv Syst 74:189–192

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Serpell LC, Berriman J, Smith MJ, Jakes R, Crowther RA (2001) From genetics to pathology: tau and alpha-synuclein assemblies in neurodegenerative diseases. Phil Trans Roy Soc (Lond) B Biol Sci 356:213–227

    Article  CAS  Google Scholar 

  • Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, McKee A, Tabaton M, Litvan I (1994) Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (PSP). Neurology 44:2015–2019

    Article  PubMed  CAS  Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual hit hypothesis. Neuropathol Appl Neurobiol 33:599–614

    Article  PubMed  CAS  Google Scholar 

  • Hiorns RW, Neal JW, Pearson RCA, Powell TPS (1991) Clustering of ipsilateral cortico-cortical projection neurons to area 7 in the rhesus monkey. Proc Roy Soc (Lond) 246:1–9

    Article  CAS  Google Scholar 

  • Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Davoisen RC, Goetz CG, Golbe LI, Grafman J, Growden JH, Hallett M, Jankovic J, Quinn NP, Tolisa E, Zee DS, Chase TW, FitzGibbon EJ, Hall Z, Juncos J, Nelson KB, Oliver E, Pramstaller P, Reich SG, Verny M (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP International Workshop. Neurology 47:1–9

    Article  PubMed  CAS  Google Scholar 

  • McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardosn JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen ENH, Ballard C, de Vos RAI, Wilcock GK, Jellinger KA, Perry RH (1996) Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  PubMed  CAS  Google Scholar 

  • Morris HR, Baker M, Yasojima K, Houlden H, Khan MN, Wood NW, Hardy J, Grossman M, Trojanowski J, Revesz T, Bigio EH, Bergeron C, Janssen JC, McGeer PL, Rossor MW, Lees AJ, Lantos PL, Hutton M (2002) Analysis of tau haplotypes in Pick’s disease. Neurology 59:443–445

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, grossman M, Clarke CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldmen H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VMY (2006) Ubiquinated TDP-43 in frontotemporal lobar degeneration and amylotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Roeher S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IRA (2009) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease (NIFID). Acta Neuropathol 118:605–616

    Article  PubMed  CAS  Google Scholar 

  • Reed LA, Wszolek ZK, Hutton M (2001) Phenotypic correlates in FTDP-17. Neuropathol Aging 22:89–107

    Article  CAS  Google Scholar 

  • Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, Yamanouchi H, Marayama S (2004) Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 63:911–918

    PubMed  Google Scholar 

  • Steiner JA, Angot E, Brunden P (2011) A deadly spread: cellular mechanisms of α-synuclein transfer. Cell Death Differ 18:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P (1988) The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 38:359–364

    Article  PubMed  CAS  Google Scholar 

  • Villoslada P, Melero I, Pablus JL, Martino G, Ucelli A, Montalban Y, Avila J, Rivest S, Acarin L, Appel S, Khoury SJ, McGeer P, Ferrer I, Delgado M, Obeso J, Schwartz M (2008) Immunotherapy for neurological disease. Clin Immunol 128:294–305

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi M, Fujita Y, Amari M, Takatama M, Al-Sarraj S, Leigh PN, Okamoto K (2004) Morphological differences of intraneural ubiquitin positive inclusions in the dentate gyrus and parahippocampal gyrus of motor neuron disease with dementia. Neuropathology 24:296–301

    Article  PubMed  Google Scholar 

  • Yamaguchi H, Nakazato Y, Shoji M, Okamoto K, Ihara Y, Morimatsu M, Hirai S (1991) Secondary deposition of beta amyloid within extracellular tangles in Alzheimer-type dementia. Am J Pathol 138:699–705

    PubMed  CAS  Google Scholar 

  • Yokota O, Tsuchiya K, Terada S, Ishizu H, Uchikado H, Ikeda M, Oyanagi K, Nakano I, Murayama S, Kuroda S, Akiyama H (2008) Basophilic inclusion body disease and neuronal intermediate filament inclusion disease: a comparative clinicopathological study. Acta Neuropathol 115:561–575

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the families of patients whose generosity made this research possible. Support for this work was provided by grants from the National Institute on Aging of the National Institutes of Health (P50-AG05681 and P01-AG03991), the Hope Center for Neurological Disorders, the Charles F. and Joanne Knight Alzheimer’s Disease Research Centre, University School of Medicine, St. Louis, MO, USA. We thank the following for making tissue sections available for this study: Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA, Brain Bank, Institute of Psychiatry, King’s College London, London, UK, William Ellis (Department of Pathology, University of California, Davis, Sacramento, CA, USA), Ronald L. Hamilton (Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA), Ian R. A. Mackenzie (Department of Pathology, Vancouver General Hospital, Vancouver, Canada), E. Tessa Hedley-Whyte (Massachusetts General Hospital and Harvard Brain Tissue Resource Center, Belmont, MA, USA), Marla Gearing (Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA), Robert Perry Department of Neuropathology, Newcastle General Hospital, Newcastle-upon-Tyne, NE4 6BE, UK), Charles Duyckaerts, Laboratoire de Neuropathologie, Hôpital de la Salpêtrière, AP-HP, 75651, Paris, France), Felix Cruz-Sanchez (Institute of Neurological and Gerontological Sciences, International University of Catalonia, Barcelona, Spain), Kari Skullerud (Department of Pathology, Rikshospitalet, N-0027, Oslo, Norway), Eileen Bigio (Department of Pathology, Northwestern University Medical School, Chicago, Illinois, USA), and Hideaki Yokoo (Department of Pathology, Gunma University School of Medicine, Maebashi, Japan).

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, R.A., Cairns, N.J. Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. J Neural Transm 119, 1551–1560 (2012). https://doi.org/10.1007/s00702-012-0838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0838-3

Keywords

Navigation