Skip to main content
Log in

Methylphenidate (MPH) promotes visual cortical activation in healthy adults in a cued visuomotor task

  • Biological Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Seeking for the mechanisms by which methylphenidate (MPH) improves behavior has demonstrated that MPH modulates excitability in the primary motor cortex. However, little is known about the influence of MPH on top-down controlled mechanisms in the sensory domain. The present study explored the effects of MPH on the activation of visual cortices in healthy adults who performed a cued visuo-motor task in a double-blind placebo-controlled crossover design. Two distinct measures, posterior alpha power and occipital slow cortical potentials (SCPs), were used to reflect raise in excitability and attention-based activation of visual cortical areas. According to the results, performance parameters (reaction time, response variance and error rate) were not affected by MPH. At the neurophysiologic level reflected by reduced alpha power, MPH increased the overall excitability of the occipital cortex, but not the parietal cortex. Before the cued response, MPH reduced alpha power and increased SCPs only before right hand responses, mostly at the right occipital location. It can be concluded that in visuo-motor tasks, MPH has the potency of adjusting the background excitation/inhibition balance of visual areas. Additionally, MPH may raise the attention controlled activation of visual cortical regions, especially during increased response control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews G, Lavine A (2006) Methylphenidate increases cortical excitability via activation of Alpha-2 noradrenergic receptors. Neuropsychopharmacol 31:594–601

    Article  CAS  Google Scholar 

  • Arnsten AF (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacol 31:2376–2383

    Article  CAS  Google Scholar 

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Bastiaansen MC, Brunia CH (2001) Anticipatory attention: an event-related desynchronization approach. Int J Psychophysiol 43:91–107

    Article  PubMed  CAS  Google Scholar 

  • Bedard AC, Martinussen R, Ickowicz A, Tannock R (2004) Methylphenidate improves visual-spatial memory in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43:260–268

    Article  PubMed  Google Scholar 

  • Brunia CH (1999) Neural aspects of anticipatory behavior. Acta Psychol (Amst) 101:213–242

    Article  CAS  Google Scholar 

  • Brunia CH, van Boxtel GJ (2001) Wait and see. Int J Psychophysiol 43:59–75

    Article  PubMed  CAS  Google Scholar 

  • Brunia CH, Hackley SA, van Boxtel GJ, Kotani Y, Ohgami Y (2011) Waiting to perceive: reward or punishment? Clin Neurophysiol 122:858–868

    Article  PubMed  Google Scholar 

  • Buchmann J, Gierow W, Weber S, Hoeppner J, Klauer T, Wittstock M, Benecke R, Haessler F, Wolters A (2006) Modulation of transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD) by medication with methylphenidate (MPH). Neurosci Lett 405:14–18

    Article  PubMed  CAS  Google Scholar 

  • Buchmann J, Dueck A, Gierow W, Zamorski H, Heinicke S, Heinrich H, Hoeppner J, Klauer T, Reis O, Haessler F (2010) Modulation of motorcortical excitability by methylphenidate in adult voluntary test persons performing a go/nogo task. J Neural Transm 117:249–258

    Article  PubMed  CAS  Google Scholar 

  • Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65:102–114

    Article  PubMed  CAS  Google Scholar 

  • Carbonnell L, Hasbroucq T, Grapperon J, Vidal F (2004) Response selection and motor areas: a behavioural and electrophysiological study. Clin Neurophysiol 115:2164–2174

    Article  PubMed  CAS  Google Scholar 

  • Coons HW, Peloquin LJ, Klorman R, Bauer LO, Ryan RM, Perlmutter RA, Salzman LF (1981) Effect of methylphenidate on young adult’s vigilance and event-related potentials. Electroencephalogr Clin Neurophysiol 51:373–387

    Article  PubMed  CAS  Google Scholar 

  • Damen EJ, Brunia CH (1987) Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiol 24:700–713

    Article  CAS  Google Scholar 

  • DeVito E, Blackwell AD, Clark L, Kent L, Dezsery AM, Turner DC, Aitken MRF, Sahakian BJ (2009) Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacol (Berl) 202:531–539

    Article  CAS  Google Scholar 

  • Driver J, Vuilleumier P (2001) Perceptual awareness and its loss in unilateral neglect and extinction. Cognition 79:39–88

    Article  PubMed  CAS  Google Scholar 

  • Epstein JN, Brinkman WB, Froehlich T, Langberg JM, Narad ME, Antonini TN, Shiels K, Simon JO, Altaye M (2011) Effects of stimulant medication, incentives, and event rate on reaction time variability in children with ADHD. Neuropsychopharmacol 36:1060–1072

    Article  Google Scholar 

  • Filipovic SR, Jahanshahi M, Rothwell JC (2000) Cortical potentials related to the nogo decision. Exp Brain Res 132:411–415

    Article  PubMed  CAS  Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  PubMed  CAS  Google Scholar 

  • Haegens S, Osipova D, Oostenveld R, Jensen O (2010) Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum Brain Mapp 31:26–35

    PubMed  Google Scholar 

  • Haegens S, Händel BF, Jensen O (2011) Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci 31:197–204

    Article  Google Scholar 

  • Hoegl T, Heinrich H, Albrecht B, Diruf M, Moll GH, Kratz O (2011) Interplay of neuronal processes during response inhibition: results from a combined event-related potentials (ERPs)/transcranial magnetic stimulation (TMS) study on methylphenidate. Int J Psychophysiol 81:99–106

    Article  PubMed  Google Scholar 

  • Hopf JM, Mangun GR (2000) Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping. Clin Neurophysiol 111:1241–1257

    Article  PubMed  CAS  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  PubMed  Google Scholar 

  • Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol 95:3844–3851

    Article  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R (2007) Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev 31:1003–1016

    Article  PubMed  Google Scholar 

  • Kolev V, Falkenstein M, Yordanova J (2006) Motor-response generation as a source of aging-related behavioural slowing in choice-reaction tasks. Neurobiol Aging 27:1719–1730

    Article  PubMed  Google Scholar 

  • Kounios J, Fleck JI, Green DL, Payne L, Stevenson JL, Bowdend EM, Jung-Beeman M (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46:281–291

    Article  PubMed  Google Scholar 

  • Kratz O, Diruf M, Studer P, Gierow W, Buchmann J, Moll GH, Heinrich H (2009) Effects of methylphenidate on motor system excitability in a response inhibition task. Behav Brain Funct 27:5–12

    Google Scholar 

  • Kratz O, Studer P, Baack J, Malcherek S, Erbe K, Moll GH, Heinrich H (2012) Pharmacological modulation of attentional functions in children with ADHD: methylphenidate vs. atomoxetine. Progr Neuro-Psychopharmacol Biol Psychiatry 37:81–89

    Article  CAS  Google Scholar 

  • Kuwahata T, Ishimatsu M, Kidani Y, Akasu T (2002) Effects of methylphenidate on the inhibitory postsynaptic potential in rat locus coeruleus neurons. Kurume Med J 49:49185–49190

    Article  Google Scholar 

  • Leuthold H (2003) Programming of expected and unexpected movements: effects on the onset of the lateralized readiness potential. Acta Psychol (Amst) 114:83–100

    Article  Google Scholar 

  • Linssen AM, Vuurman EF, Sambeth A, Nave S, Spooren W, Vargas G, Santarelli L, Riedel WJ (2011) Contingent negative variation as a dopaminergic biomarker: evidence from dose-related effects of methylphenidate. Psychopharmacol (Berl) 218:533–542

    Article  CAS  Google Scholar 

  • Lubow RE, Braunstein-Bercovitz H, Blumenthal O, Kaplan O, Toren P (2005) Latent inhibition and asymmetrical visual-spatial attention in children with ADHD. Child Neuropsychol 11:445–457

    Article  PubMed  CAS  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G (2011) Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2:99

    Article  PubMed  Google Scholar 

  • Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A (2000) Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett 284:121–125

    Article  PubMed  CAS  Google Scholar 

  • Moll GH, Heinrich H, Rothenberger A (2003) Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention-deficit hyperactivity disorder. Acta Psychiatr Scand 107:69–72

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  PubMed  CAS  Google Scholar 

  • Pietrzak RH, Mollica CM, Maruff P, Snyder PJ (2006) Cognitive effects of immediate-release methylphenidate in children with attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 30:1225–1245

    Article  PubMed  CAS  Google Scholar 

  • Rapport MD, Kelly KL (1993) Psychostimulant effects on learning and cognitive function. In: Matson JL (ed) Handbook of hyperactivity in children. Allyn & Bacon, Boston, pp 97–136

    Google Scholar 

  • Rektor I, Sochurková D, Bocková M (2006) Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Progr Brain Res 159:311–330

    Article  CAS  Google Scholar 

  • Richter MM, Ehlis AC, Jacob CP, Fallgatter AJ (2007) Cortical excitability in adult patients with attention-deficit/hyperactivity disorder (ADHD). Neurosci Lett 419:137–141

    Article  PubMed  CAS  Google Scholar 

  • Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 25:603–610

    Article  PubMed  Google Scholar 

  • Rockstroh B (1989) Slow cortical potentials and behaviour, 2nd edn. Urban & Schwarzenberg, New York

    Google Scholar 

  • Rockstroh B, Elbert T, Lutzenberger W, Birbaumer N (1982) The effects of slow cortical potentials on response speed. Psychophysiol 19:211–217

    Article  CAS  Google Scholar 

  • Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018

    Article  PubMed  Google Scholar 

  • Rubia K, Halari R, Cubillo A, Smith AB, Mohammad AM, Brammer M, Taylor E (2011a) Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacol 36:1575–1586

    Article  CAS  Google Scholar 

  • Rubia K, Halari R, Mohammad AM, Taylor E, Brammer M (2011b) Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biol Psychiatry 70:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MF, Nixon PD, Renowden S, Wade DT, Passingham RE (1997) The left parietal cortex and motor attention. Neuropsychologia 35:1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MF, Ellison A, Walsh V (2001) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4:656–661

    Article  PubMed  CAS  Google Scholar 

  • Samar VJ (1999) Wavelet analysis of neuroelectric waveforms. Brain Lang 66:1–6

    Article  PubMed  Google Scholar 

  • Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22:2917–2926

    Article  PubMed  CAS  Google Scholar 

  • Scheibe C, Schubert R, Sommer W, Heekeren HR (2009) Electrophysiological evidence for the effect of prior probability on response preparation. Psychophysiol 46:758–770

    Article  Google Scholar 

  • Schneider M, Retz W, Freitag C, Irsch J, Graf P, Retz-Junginger P, Rösler M (2007) Impaired cortical inhibition in adult ADHD patients: a study with transcranial magnetic stimulation. J Neural Transm 72:303–309

    Article  Google Scholar 

  • Spencer SV, Hawk LW Jr, Richards JB, Shiels K, Pelham WE Jr, Waxmonsky JG (2009) Stimulant treatment reduces lapses in attention among children with ADHD: the effects of methylphenidate on intra-individual response time distributions. J Abnorm Child Psychol 37:805–816

    Article  PubMed  Google Scholar 

  • Swinnen SP, Li Y, Dounskaia N, Byblow W, Stinear C, Wagemans J (2004) Perception–action coupling during bimanual coordination: the role of visual perception in the coalition of constraints that govern bimanual action. J Mot Behav 36:394–398, 402–407 (discussion 408–417)

    Google Scholar 

  • Sylvester CM, Shulman GL, Jack AI, Corbetta M (2007) Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. J Neurosci 27:14424–14433

    Article  PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249

    PubMed  CAS  Google Scholar 

  • The MTA Cooperative Group (1999) A 14-month randomized clinical trial of treatment strategies for attention deficit/hyperactivity disorder. Arch Gen Psychiatry 56:1073–1086

    Article  Google Scholar 

  • Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:94494–94502

    Article  Google Scholar 

  • Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage 54:3101–3110

    Article  PubMed  CAS  Google Scholar 

  • Wild-Wall N, Sangals J, Sommer W, Leuthold H (2003) Are fingers special? Evidence about movement preparation from event-related brain potentials. Psychophysiol 40:7–16

    Article  Google Scholar 

  • Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. J Neurosci 20:1–6

    Google Scholar 

  • Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. NeuroImage 22:590–602

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by EU COST action B27 ENOC (Electric Neuronal Oscillations and Cognition). The authors are thankful to Martin Deinzer for technical assistance and data recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodzhev, Y., Yordanova, J., Diruf, M. et al. Methylphenidate (MPH) promotes visual cortical activation in healthy adults in a cued visuomotor task. J Neural Transm 119, 1455–1464 (2012). https://doi.org/10.1007/s00702-012-0799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0799-6

Keywords

Navigation