Skip to main content

Advertisement

Log in

Behavioural studies with a newly developed neuroprotective KYNA-amide

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The neuroactive properties and neuroprotective potential of endogenous l-kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood–brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballinger GA (2004) Using generalized estimating equations for longitudinal data analysis. Organ Res Methods 7(2):127–150

    Article  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  PubMed  CAS  Google Scholar 

  • Butelman ER (1989) A novel NMDA antagonist, MK-801, impairs performance in a hippocampal-dependent spatial learning task. Pharmacol Biochem Behav 34(1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Chess AC, Simoni MK et al (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33(3):797–804

    Article  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C et al (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  PubMed  CAS  Google Scholar 

  • Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Schwieler L et al (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56(4):255–260

    Article  PubMed  CAS  Google Scholar 

  • Fulop F, Szatmari I et al (2009) Syntheses, transformations and pharmaceutical applications of kynurenic acid derivatives. Curr Med Chem 16(36):4828–4842

    Article  PubMed  CAS  Google Scholar 

  • Gellért L, Fuzik J, Göblös A, Sárközi K, Marosi M, Kis Z, Farkas T, Szatmári I, Fülöp F, Vécsei L, Toldi J (2011) Neuroprotection with a new kynurenic acid analog in the four-vessel occlusion model of ischemia. Eur J Pharmacol. doi:10.1016/j.ejphar.2011.05.069

  • Gunduz-Bruce H (2009) The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev 60(2):279–286

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF et al (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473

    PubMed  CAS  Google Scholar 

  • Kenton JS et al (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10(9):2965–2973

    Google Scholar 

  • Knyihar-Csillik E, Mihaly A et al (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61(4):429–432

    Article  PubMed  CAS  Google Scholar 

  • Marosi M et al (2009) A novel kynurenic acid analogue: a comparison with kynurenic acid an in vitro electrophysiological study. J Neural Transm 117:183–188

    Article  PubMed  Google Scholar 

  • Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6(1):53–60

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, McHugh TJ et al (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5(5):361–372

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Yamamoto T et al (1993) Blockade of hippocampal nicotinic receptors impairs working memory but not reference memory in rats. Pharmacol Biochem Behav 45(1):89–93

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Yamamoto T et al (1994) Intrahippocampal administration of a glycine site antagonist impairs working memory performance of rats. Eur J Pharmacol 253(1–2):183–187

    Article  PubMed  CAS  Google Scholar 

  • Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35(8):1734–1742

    Google Scholar 

  • Prass K, Dirnagl U (1998) Glutamate antagonists in therapy of stroke. Restor Neurol Neurosci 13(1–2):3–10

    PubMed  CAS  Google Scholar 

  • Prescott C, Weeks AM et al (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402(1–2):108–112

    Article  PubMed  CAS  Google Scholar 

  • Rassoulpour A, Wu HQ et al (2005) Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93(3):762–765

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40(3):599–636

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21(4):149–154

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Addae JI (2002) The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 447(2–3):285–296

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Plotkin J et al (2009) Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 19(6):621–628

    Article  PubMed  CAS  Google Scholar 

  • Vamos E, Pardutz A et al (2009a) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283(1–2):21–27

    Article  PubMed  CAS  Google Scholar 

  • Vamos E, Pardutz A et al (2009b) l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57(4):425–429

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Beal MF (1990) Intracerebroventricular injection of kynurenic acid, but not kynurenine, induces ataxia and stereotyped behavior in rats. Brain Res Bull 25(4):623–627

    Article  PubMed  CAS  Google Scholar 

  • Wu HQ, Guidetti P et al (2000) Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 97(2):243–251

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Ichitani Y (2004) Hippocampal N-methyl-d-aspartate receptor-mediated encoding and retrieval processes in spatial working memory: delay-interposed radial maze performance in rats. Neuroscience 129(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Zadori D, Klivenyi P et al (2009) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116(11):1403–1409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from OTKA (K 75628), TÁMOP-4.2.1/B-09/1/KONV-2010-0005, ETT(02-64), and the Teller Ede Foundation (NAP-BIO-06-BAYBIOSZ). T.F. is a Bolyai Fellow of the Hungarian Academy of Sciences. Thanks are due to Szabolcs Oláh for his useful advice in the course of the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Toldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellért, L., Varga, D., Ruszka, M. et al. Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm 119, 165–172 (2012). https://doi.org/10.1007/s00702-011-0692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0692-8

Kex words

Navigation