Skip to main content

Advertisement

Log in

Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study

  • Dementias - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The current drug treatment for Alzheimer’s disease (AD) is only partially and temporary effective. Transcranial magnetic stimulation (TMS) is a non-invasive technique that generates an electric current inducing modulation in cortical excitability. In addition, cognitive training (COG) may improve cognitive functions in AD. Our aim was to treat AD patients combining high-frequency repetitive TMS interlaced with COG (rTMS-COG). Eight patients with probable AD, treated for more than 2 months with cholinesterase inhibitors, were subjected to daily rTMS-COG sessions (5/week) for 6 weeks, followed by maintenance sessions (2/week) for an additional 3 months. Six brain regions, located individually by MRI, were stimulated. COG tasks were developed to fit these regions. Primary objectives were average improvement of Alzheimer Disease Assessment Scale-Cognitive (ADAS-cog) and Clinical Global Impression of Change (CGIC) (after 6 weeks and 4.5 months, compared to baseline). Secondary objectives were average improvement of MMSE, ADAS-ADL, Hamilton Depression Scale (HAMILTON) and Neuropsychiatric Inventory (NPI). One patient abandoned the study after 2 months (severe urinary sepsis). ADAS-cog (average) improved by approximately 4 points after both 6 weeks and 4.5 months of treatment (P < 0.01 and P < 0.05) and CGIC by 1.0 and 1.6 points, respectively. MMSE, ADAS-ADL and HAMILTON improved, but without statistical significance. NPI did not change. No side effects were recorded. In this study, rTMS-COG (provided by Neuronix Ltd., Yokneam, Israel) seems a promising effective and safe modality for AD treatment, possibly as good as cholinesterase inhibitors. A European double blind study is underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beach TG, Kuo YM, Spiegel K, Emmerling MR, Sue LI, Kokjohn K, Roher AE (2000) The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 59(4):308–313

    PubMed  CAS  Google Scholar 

  • Bellgowan PS, Buffalo EA, Bodurka J, Martin A (2009) Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learn Mem 16(7):433–438

    Article  PubMed  Google Scholar 

  • Belmaker RH, Grisaru N (1998) Magnetic stimulation of the brain in animal depression models responsive to ECS. J ECT 14(3):194–205

    PubMed  CAS  Google Scholar 

  • Berlingeri M, Crepaldi D, Roberti R, Scialfa G, Luzzatti C, Paulesu E (2008) Nouns and verbs in the brain: grammatical class and task specific effects as revealed by fMRI. Cogn Neuropsychol 25(4):528–558

    Article  PubMed  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593. doi:10.1002/14651858.CD005593

  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE (2009) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2:CD001191. doi:10.1002/14651858.CD001191.pub2

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  PubMed  CAS  Google Scholar 

  • Bohning DE, Shastri A, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, Teneback C, Vincent DJ, George MS (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatr 45(4):385–394

    Article  CAS  Google Scholar 

  • Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS (2000) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Resonance Imaging 11(6):569–574

    Article  CAS  Google Scholar 

  • Boroojerdi B, Phipps M, Kopylev L, Wharton CM, Cohen LG, Grafman J (2001) Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology 56(4):526–528

    PubMed  CAS  Google Scholar 

  • Braun M, Finke C, Ostendorf F, Lehmann TN, Hoffmann KT, Ploner CJ (2008) Reorganization of associative memory in humans with long-standing hippocampal damage. Brain 131(Pt 10):2742–2750

    Article  PubMed  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Buck BH, Black SE, Behrmann M, Caldwell C, Bronskill MJ (1997) Spatial- and object-based attentional deficits in Alzheimer’s disease. Relationship to HMPAO-SPECT measures of parietal perfusion. Brain 120(Pt 7):1229–1244

    Article  PubMed  Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 239(Pt 7):1659–1673

    Article  Google Scholar 

  • Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM, Miniussi C (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63(11):1602–1604

    Article  PubMed  Google Scholar 

  • Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314

    PubMed  CAS  Google Scholar 

  • Fleischmann A, Hirschmann S, Dolberg OT, Dannon PN, Grunhaus L (1999) Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats. Biol Psychiatry 45(6):759–763

    Article  PubMed  CAS  Google Scholar 

  • Foerster S, Buschert VC, Buchholz HG, Teipel SJ, Zach C, Bartenstein P, Buerger K (2009) Positive effects of a 6-month stage-specific cognitive intervention program on brain metabolism in subjects with amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s Disease (AD). Alzheimers Dementia 5(4 Suppl 1):38

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Lobo A, Martinez-Lage J, Soininen H, Hofman A (2000) Incidence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurol Dis Elderly Res Group 54(11 Suppl 5):S10–15

    CAS  Google Scholar 

  • George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, Anderson B, Nahas Z, Bulow P, Zarkowski P, Holtzheimer PE 3rd, Schwartz T, Sackeim HA (2010) Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch General Psychiatr 67(5):507–516

    Article  Google Scholar 

  • Giacobini E (1990) The cholinergic system in Alzheimer disease. Prog Brain Res 84:321–332

    Article  PubMed  CAS  Google Scholar 

  • Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M (1994) Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5(9):1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Grossman M, Rhee J (2001) Cognitive resources during sentence processing in Alzheimer’s disease. Neuropsychologia 39(13):1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Grossman M, Koenig P, DeVita C, Glosser G, Alsop D, Detre J, Gee J (2002) The neural basis for category-specific knowledge: an fMRI study. Neuroimage 15(4):936–948

    Article  PubMed  Google Scholar 

  • Guse B, Falkai P, Wobrock T (2010) Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm 117(1):105–122

    Article  PubMed  Google Scholar 

  • Guy W (1976) Clinical global impressions. In: ECDEU assessment manual for psychopharmacology, revised (DHEW Publ No ADM 76–338). National Institute of Mental Health, Rockville, pp 218–222

    Google Scholar 

  • Hamidi M, Tononi G, Postle BR (2008) Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia 47(2):295–302

    Article  PubMed  Google Scholar 

  • Hamilton M (1980) Rating depressive patients. J Clin Psychiatr 41(12 Pt 2):21–24

    CAS  Google Scholar 

  • Hao J, Li K, Li K, Zhang D, Wang W, Yang Y, Yan B, Shan B, Zhou X (2005) Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett 385(1):18–23

    Article  PubMed  CAS  Google Scholar 

  • Harpaz Y, Levkovitz Y, Lavidor M (2009) Lexical ambiguity resolution in Wernicke’s area and its right homologue. Cortex 45(9):1097–1103

    Article  PubMed  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122

    Article  PubMed  Google Scholar 

  • Hyman BT, Damasio H, Damasio AR, Van Hoesen GW (1989) Alzheimer’s disease. Annu Rev Public Health 10:115–140

    Article  PubMed  CAS  Google Scholar 

  • Julkunen P, Jauhiainen AM, Westerén-Punnonen S, Pirinen E, Soininen H, Könönen M, Pääkkönen A, Määttä S, Karhu J (2008) Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer’s disease: a pilot study. J Neurosci Methods 172(2):270–276

    Article  PubMed  Google Scholar 

  • Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatr 46(12):1603–1613

    Article  CAS  Google Scholar 

  • Lisanby SH, Luber B, Perera T, Sackeim HA (2000) Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology. Int J Neuropsychopharmacol 3(3):259–273

    Article  PubMed  Google Scholar 

  • Mantovani A, Lisanby SH (2004) Applications of transcranial magnetic stimulation to therapy in psychiatry. Psychiatr Times 21(9)

  • Mecocci P, Bladstrom A, Stender K (2009) Effects of memantine on cognition in patients with moderate to severe Alzheimer’s disease: post-hoc analyses of ADAS-cog and SIB total and single-item scores from six randomized, double-blind, placebo-controlled studies. Int J Geriatr Psychiatr 24(5):532–538

    Article  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498(Pt 3):817–823

    PubMed  CAS  Google Scholar 

  • Nixon P, Lazarova J, Hodinott-Hill I, Gough P, Passingham R (2004) The inferior frontal gyrus and phonological processing: an investigation using rTMS. J Cogn Neurosci 16(2):289–300

    Article  PubMed  Google Scholar 

  • Onder G, Zanetti O, Giacobini E, Frisoni GB, Bartorelli L, Carbone G, Lambertucci P, Silveri MC, Bernabei R (2005) Reality orientation therapy combined with cholinesterase inhibitors in Alzheimer’s disease: randomised controlled trial. Br J Psychiatry 187:450–455

    Article  PubMed  Google Scholar 

  • Orrell M, Spector A, Thorgrimsen L, Woods B (2005) A pilot study examining the effectiveness of maintenance Cognitive Stimulation Therapy (MCST) for people with dementia. Int J Geriatr Psychiatr 20:446–451

    Article  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1(8004):189

    Article  PubMed  CAS  Google Scholar 

  • Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DX, Willis RJ, Wallace RB (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29(1–2):125–132

    Article  PubMed  CAS  Google Scholar 

  • Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66(11):1515–1534

    Article  PubMed  CAS  Google Scholar 

  • Rogalsky C, Matchin W, Hickok G (2008) Broca’s area, sentence comprehension, and working memory: an fMRI Study. Front Hum Neurosci 2:14

    Article  PubMed  Google Scholar 

  • Rogers SL, Friedhoff LT (1996) The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia 7(6):293–303

    PubMed  CAS  Google Scholar 

  • Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatr 141(11):1356–1364

    PubMed  CAS  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    Article  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148(1):1–16

    Article  PubMed  Google Scholar 

  • Sitzer DI, Twamley EW, Jeste DV (2006) Cognitive training in Alzheimer’s disease: a meta-analysis of the literature. Acta Psychiatr Scand 114(2):75–90

    Article  PubMed  CAS  Google Scholar 

  • Spector A, Thorgrimsen L, Woods B, Royan L, Davies S, Butterworth M, Orrell M (2003) Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br J Psychiatr 183:248–254

    Article  Google Scholar 

  • Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460

    Article  PubMed  Google Scholar 

  • Tárraga L, Boada M, Modinos G, Espinosa A, Diego S, Morera A, Guitart M, Balcells J, Lopez OL, Becker JT (2006) A randomised pilot study to assess the efficacy of an interactive, multimedia tool of cognitive stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatr 77(10):1116–1121

    Article  PubMed  Google Scholar 

  • Thickbroom GW (2007) Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res 180(4):583–593

    Article  PubMed  Google Scholar 

  • van Duijn CM (1996) Epidemiology of the dementias: recent developments and new approaches. J Neurol Neurosurg Psychiatr 60(5):478–488

    Article  PubMed  Google Scholar 

  • Wassermann EM, Grafman J, Berry C, Hollnagel C, Wild K, Clark K, Hallett M (1996) Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol 101(5):412–417

    PubMed  CAS  Google Scholar 

  • Zheng XM (2000) Regional cerebral blood flow changes in drug-resistant depressed patients following treatment with transcranial magnetic stimulation: a statistical parametric mapping analysis. Psychiatr Res 100(2):75–80

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Dr. Moshe Faran PhD for his professional assistance, Dr. Shai Efrati MD for his support, Dr. Ilana Galantner PhD for performing the statistical analysis, Dr. Puzhevsky MD for performing the MRI anatomical determinations, and Dr. Carmiya Weingarten-Baror PhD for drafting the article.

Conflict of interest

Neuronix Ltd, Yokneam, Israel, financially supported this study through the Department of Research of Assaf-Harofeh Medical Center, Israel. Prof. Rabey is a consultant for Neruronix Ltd. He is also Chairman of the Steering Committee for the European multi-center research sponsored by Neuronix Ltd. Jonathan Bentwich was an employee of Neuronix Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Rabey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentwich, J., Dobronevsky, E., Aichenbaum, S. et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study. J Neural Transm 118, 463–471 (2011). https://doi.org/10.1007/s00702-010-0578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0578-1

Keywords

Navigation