Skip to main content
Log in

What can Drosophila teach us about iron-accumulation neurodegenerative disorders?

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The present review focuses on the development and use of Drosophila for modeling neurodegenerative disorders that involve iron accumulation, in particular Friedrich’s Ataxia (FRDA) and Neurodegeneration with Iron accumulation (NBIA). Several Drosophila models of such disorders have been introduced successfully in the last few years. Here we review these models and note on the feasibility and advantages of using fly models for understanding the molecular and cellular bases of these devastating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afshar K, Gonczy P, DiNardo S, Wasserman SA (2001) Fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster. Genetics 157(3):1267–1276

    PubMed  CAS  Google Scholar 

  • Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746

    Article  PubMed  CAS  Google Scholar 

  • Anderson PR, Kirby K, Hilliker AJ, Phillips JP (2005) RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Hum Mol Genet 14(22):3397–3405

    Article  PubMed  CAS  Google Scholar 

  • Anderson PR, Kirby K, Orr WC, Hilliker AJ, Phillips JP (2008) Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. Proc Natl Acad Sci USA 105(2):611–616

    Article  PubMed  CAS  Google Scholar 

  • Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276(5319):1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3(10):1950–1964

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  • Campanella A, Isaya G, O’Neill HA, Santambrogio P, Cozzi A, Arosio P, Levi S (2004) The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast. Hum Mol Genet 13(19):2279–2288

    Article  PubMed  CAS  Google Scholar 

  • Canizares J, Blanca JM, Navarro JA, Monros E, Palau F, Molto MD (2000) dfh is a Drosophila homolog of the Friedreich’s ataxia disease gene. Gene 256(1–2):35–42

    Article  PubMed  CAS  Google Scholar 

  • Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9(8):1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763(7):747–758

    Article  PubMed  CAS  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ et al (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408(6808):101–106

    Article  PubMed  CAS  Google Scholar 

  • Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, Isaya G (2006) Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15(3):467–479

    Article  PubMed  CAS  Google Scholar 

  • Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43(4):286–296

    PubMed  CAS  Google Scholar 

  • Kadener S, Villella A, Kula E, Palm K, Pyza E, Botas J, Hall JC, Rosbash M (2006) Neurotoxic protein expression reveals connections between the circadian clock and mating behavior in Drosophila. Proc Natl Acad Sci USA 103(36):13537–13542

    Article  PubMed  CAS  Google Scholar 

  • Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G, Munnich A, Cabantchik ZI (2008) Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood 112(13):5219–5227

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan G, Santos JH, Graziewicz MA, Copeland WC, Isaya G, Van Houten B, Resnick MA (2003) Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12(24):3331–3342

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287(5459):1837–1840

    Article  PubMed  CAS  Google Scholar 

  • Kotzbauer PT, Truax AC, Trojanowski JQ, Lee VM (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci 25(3):689–698

    Article  PubMed  CAS  Google Scholar 

  • Kuo YM, Duncan JL, Westaway SK, Yang H, Nune G, Xu EY, Hayflick SJ, Gitschier J (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Llorens JV, Navarro JA, Martinez-Sebastian MJ, Baylies MK, Schneuwly S, Botella JA, Molto MD (2007) Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. FASEB J 21(2):333–344

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4:315–342

    Article  PubMed  CAS  Google Scholar 

  • Miranda CJ, Santos MM, Ohshima K, Smith J, Li L, Bunting M, Cossee M, Koenig M, Sequeiros J, Kaplan J et al (2002) Frataxin knockin mouse. FEBS Lett 512(1–3):291–297

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M (2006) Friedreich ataxia: detection of GAA repeat expansions and frataxin point mutations. Methods Mol Med 126:197–216

    PubMed  CAS  Google Scholar 

  • Puccio H (2007) Conditional mouse models for Friedreich ataxia, a neurodegenerative disorder associating cardiomyopathy. Handb Exp Pharmacol 178:365–375

    Article  PubMed  CAS  Google Scholar 

  • Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27(2):181–186

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3(4):e1958

    Article  PubMed  Google Scholar 

  • Rana A, Seinen E, Siudeja K, Muntendam R, Srinivasan B, van der Want JJ, Hayflick S, Reijngoud DJ, Kayser O, Sibon OC (2010) Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci USA 107(15):6988–6993

    Article  PubMed  CAS  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17(2):215–217

    Article  PubMed  CAS  Google Scholar 

  • Runko AP, Griswold AJ, Min KT (2008) Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila. FEBS Lett 582(5):715–719

    Article  PubMed  CAS  Google Scholar 

  • Schagerlof U, Elmlund H, Gakh O, Nordlund G, Hebert H, Lindahl M, Isaya G, Al-Karadaghi S (2008) Structural basis of the iron storage function of frataxin from single-particle reconstruction of the iron-loaded oligomer. Biochemistry 47(17):4948–4954

    Article  PubMed  Google Scholar 

  • Seznec H, Simon D, Bouton C, Reutenauer L, Hertzog A, Golik P, Procaccio V, Patel M, Drapier JC, Koenig M et al (2005) Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14(4):463–474

    Article  PubMed  CAS  Google Scholar 

  • Sturm B, Bistrich U, Schranzhofer M, Sarsero JP, Rauen U, Scheiber-Mojdehkar B, de Groot H, Ioannou P, Petrat F (2005) Friedreich’s ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity? J Biol Chem 280(8):6701–6708

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46(1):123–125

    Article  PubMed  CAS  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Li C, Lv S, Zhou B (2009) Pantothenate kinase-associated neurodegeneration: insights from a Drosophila model. Hum Mol Genet 18(19):3659–3672

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wu Z, Kuo YM, Zhou B (2005) Dietary rescue of fumble–a Drosophila model for pantothenate-kinase-associated neurodegeneration. J Inherit Metab Dis 28(6):1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Weiss AND M. Hanan for helpful discussions and suggestions. U.B. is funded by the Eric Roland Interdisciplinary Program in Neurodegenerative Diseases. S. K. is a recipient of a HFSP Career Development Award. The work is supported by HSFP, the Abisch-Frenkel Foundation, Fritz-Thyssen Foundation, German-Israeli Foundation Young Investigator Grant, The Legacy Found from the Israel Science Foundation and Marie Curie International Reintegration Grant (EU), to SK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kadener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekenstein, U., Kadener, S. What can Drosophila teach us about iron-accumulation neurodegenerative disorders?. J Neural Transm 118, 389–396 (2011). https://doi.org/10.1007/s00702-010-0511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0511-7

Keywords

Navigation