Skip to main content
Log in

Nuclear translocation of anamorsin during drug-induced dopaminergic neurodegeneration in culture and in rat brain

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Anamorsin, also called cytokine-induced apoptosis inhibitor 1 (CIAPIN1), was recently identified to confer resistance to apoptosis induced by growth factor deprivation and to be indispensible for hematopoiesis. Recently, it was demonstrated that anamorsin is also widely distributed in both fetal and adult tissues. In this study, we evaluated the tissue distribution of anamorsin in the central nervous system (CNS) during development. In situ hybridization and immunoblot analyses revealed that anamorsin mRNA and protein were both highly and widely expressed in various regions of the CNS, including the cerebral cortex, hippocampus, midbrain, cerebellum, medulla, and spinal cord. Based on these findings, we examined its cellular localization during drug-induced neurodegeneration in MN9D dopaminergic cells. Both immunocytochemical localization and immunoblot analyses indicated that cytosolic anamorsin was translocated into the nucleus in a time-dependent manner following treatment with a reactive oxygen species (ROS)-inducing drug, 6-hydroxydopamine (6-OHDA). Treatment of cells with the apoptosis-inducing reagent, staurosporine, did not appear to cause translocation of anamorsin into the nucleus. When cells were treated with the nuclear export inhibitor, Leptomycin B, alone or with 6-OHDA, nuclear anamorsin levels increased, indicating that nuclear influx and efflux of anamorsin are regulated by 6-OHDA treatment. In rat brain injected with 6-OHDA, nuclear translocation of anamorsin was identified in certain tyrosine hydroxylase (TH)-positive neurons as well as TH-negative cells. Furthermore, treatment of MN9D cells with hydrogen peroxide or ROS-inducing trace metals caused nuclear translocation of anamorsin. Taken together, our data indicate that nuclear translocation of anamorsin is a ROS-dependent event and may participate in the regulation of transcription of critical molecules during dopaminergic neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2(5):325–334

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MB (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56(4):1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    Article  PubMed  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144

    Article  PubMed  CAS  Google Scholar 

  • Capelson M, Hetzer MW (2009) The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10(7):697–705

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Won LA, Kontur PJ, Hammond DN, Fox AP, Wainer BH, Hoffmann PC, Heller A (1991) Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res 552(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57(1):86–94

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279(19):20451–20460

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  PubMed  CAS  Google Scholar 

  • Eboue D, Auger R, Angiari C, Le Doan T, Tenu JP (2003) Use of a simple fractionation method to evaluate binding, internalization and intracellular distribution of oligonucleotides in vascular smooth muscle cells. Arch Physiol Biochem 111(3):265–272

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32(6):804–812

    Article  PubMed  CAS  Google Scholar 

  • Ferraiuolo MA, Lee CS, Ler LW, Hsu JL, Costa-Mattioli M, Luo MJ, Reed R, Sonenberg N (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci USA 101(12):4118–4123

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    PubMed  CAS  Google Scholar 

  • Hamamoto T, Gunji S, Tsuji H, Beppu T (1983) Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J Antibiot (Tokyo) 36(6):639–645

    CAS  Google Scholar 

  • Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ (2003a) Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 23(12):5069–5078

    PubMed  CAS  Google Scholar 

  • Han BS, Noh JS, Gwag BJ, Oh YJ (2003b) A distinct death mechanism is induced by 1-methyl-4-phenylpyridinium or by 6-hydroxydopamine in cultured rat cortical neurons: degradation and dephosphorylation of tau. Neurosci Lett 341(2):99–102

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Li X, Qiao T, Zhang J, Shao X, Fan D (2006) Distribution of CIAPIN1 in normal fetal and adult human tissues. J Histochem Cytochem 54(4):417–426

    Article  PubMed  CAS  Google Scholar 

  • Jang SW, Yang SJ, Srinivasan S, Ye K (2007) Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem 282(42):30836–30844

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13(Suppl 1):24–34

    Google Scholar 

  • Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J (2006) Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5(7):1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Katayama R, Ishioka T, Takada S, Takada R, Fujita N, Tsuruo T, Naito M (2010) Modulation of Wnt signaling by the nuclear localization of cellular FLIP-L. J Cell Sci 123(Pt 1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Oh JH, Choi WS, Chang II, Sohn S, Krajewski S, Reed JC, O’Malley KL, Oh YJ (1999) Sequential cleavage of poly(ADP-ribose)polymerase and appearance of a small Bax-immunoreactive protein are blocked by Bcl-X(L) and caspase inhibitors during staurosporine-induced dopaminergic neuronal apoptosis. J Neurochem 72(6):2456–2463

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: implications for neurological care. Nat Clin Pract Neurol 2(3):136–146

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Park SH, Chung KC, Oh YJ (2003) Proteomic analysis reveals upregulation of calreticulin in murine dopaminergic neuronal cells after treatment with 6-hydroxydopamine. Neurosci Lett 352(1):17–20

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Park SH, Shin DI, Hwang JY, Park B, Park YJ, Lee TH, Chae HZ, Jin BK, Oh TH et al (2008) Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J Biol Chem 283(15):9986–9998

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  PubMed  CAS  Google Scholar 

  • Li X, Hong L, Zhao Y, Jin H, Fan R, Du R, Xia L, Luo G, Fan D (2007) A new apoptosis inhibitor, CIAPIN1 (cytokine-induced apoptosis inhibitor 1), mediates multidrug resistance in leukemia cells by regulating MDR-1, Bcl-2, and Bax. Biochem Cell Biol 85(6):741–750

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu K, and Fan D (2010) CIAPIN1 as a therapeutic target in cancer. Expert Opin Ther Targets 14(6):603–610

    Google Scholar 

  • Licker V, Kovari E, Hochstrasser DF, Burkhard PR (2009) Proteomics in human Parkinson’s disease research. J Proteomics 73(1):10–29

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129

    Article  PubMed  CAS  Google Scholar 

  • Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Mladenka P, Simunek T, Hubl M, Hrdina R (2006) The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 40(3):263–272

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  • Neary CL, and Pastorino JG (2010) Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem Biophys Res Commun 394(4):1075–81

    Google Scholar 

  • Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269(9):6320–6324

    PubMed  CAS  Google Scholar 

  • Oh YJ, Uhland-Smith A, Kim JE, O’Malley KL (1997) Regions outside of the Bcl-2 homology domains, BH1 and BH2 protect a dopaminergic neuronal cell line from staurosporine-induced cell death. Brain Res Mol Brain Res 51(1–2):133–142

    Article  PubMed  CAS  Google Scholar 

  • Park SA, Park HW, Kim NH, Kim YH, Kwak MJ, Shin JS, Kim CW (2010) Effects of Tau on the activity of triose phosphate isomerase (TPI) in brain cells. Neurochem Int 56(8):886–892

    Google Scholar 

  • Pienaar IS, Daniels WM, Gotz J (2008) Neuroproteomics as a promising tool in Parkinson’s disease research. J Neural Transm 115(10):1413–1430

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, Zheng Y, Abraham L, Ramos KS, Tiffany-Castiglioni E (2005) Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. Brain Res Mol Brain Res 134(2):323–332

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312

    Article  PubMed  CAS  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10(11):780–791

    Article  PubMed  CAS  Google Scholar 

  • Shibayama H, Takai E, Matsumura I, Kouno M, Morii E, Kitamura Y, Takeda J, Kanakura Y (2004) Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med 199(4):581–592

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  PubMed  CAS  Google Scholar 

  • Uberti D, Yavin E, Gil S, Ayasola KR, Goldfinger N, Rotter V (1999) Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin. Brain Res Mol Brain Res 65(2):167–175

    Article  PubMed  CAS  Google Scholar 

  • Van Laar VS, Dukes AA, Cascio M, Hastings TG (2008) Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis 29(3):477–489

    Article  PubMed  Google Scholar 

  • Vernis L, Facca C, Delagoutte E, Soler N, Chanet R, Guiard B, Faye G, Baldacci G (2009) A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS One 4(2):e4376

    Article  PubMed  Google Scholar 

  • Weis K (2007) The nuclear pore complex: oily spaghetti or gummy bear? Cell 130(3):405–407

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 129(4):526–529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A. Heller for allowing us to use the MN9D cell line. We also greatly appreciate critical suggestions made by Dr. Moussa B.H. Youdim. We would like to dedicate much of our work to Dr. Youdim on his 70th birthday. This work was supported by a grant from Ministry of Health and Welfare (A090063), and, in part, by the Brain Research Center, World Class University (WCU, R33-2208-10014) and KOSEF through SRC (R11-2008-036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young J. Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KA., Yun, N., Shin, DI. et al. Nuclear translocation of anamorsin during drug-induced dopaminergic neurodegeneration in culture and in rat brain. J Neural Transm 118, 433–444 (2011). https://doi.org/10.1007/s00702-010-0490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0490-8

Keywords

Navigation