Iron and the immune system

Abstract

Iron and immunity are closely linked: firstly by the fact that many of the genes/proteins involved in iron homoeostasis play a vital role in controlling iron fluxes such that bacteria are prevented from utilising iron for growth; secondly, cells of the innate immune system, monocytes, macrophages, microglia and lymphocytes, are able to combat bacterial insults by carefully controlling their iron fluxes, which are mediated by hepcidin and ferroportin. In addition, lymphocytes play an important role in adaptive immunity. Thirdly, a variety of effector molecules, e.g. toll-like receptors, NF-κB, hypoxia factor-1, haem oxygenase, will orchestrate the inflammatory response by mobilising a variety of cytokines, neurotrophic factors, chemokines, and reactive oxygen and nitrogen species. Pathologies, where iron loading and depletion occur, may adversely affect the ability of the cell to respond to the bacterial insult.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Baranano DE, Snyder SH (2001) Neural roles for heme oxygenase contrasts to nitric oxide synthase. Proc Natl Acad Sci USA 98:10996–11002

    PubMed  Article  CAS  Google Scholar 

  2. Bayele HK, Peyssonnaux C, Giatromanolaki A et al (2007) HIF-1 regulated heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite. Blood 110:3039–3048

    PubMed  Article  CAS  Google Scholar 

  3. Bullen JJ, Spalding PB, Ward CG, Gutteridge JM (1991) Haemochromatosis, iron and septicaemia caused by Vibrio vulnificus. Arch Intern Med 151:1606–1609

    PubMed  Article  CAS  Google Scholar 

  4. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    PubMed  Article  CAS  Google Scholar 

  5. Crichton RR, Dexter DT, Ward RJ (2010) Brain iron metabolism and its perturbation in neurological disease J Neural Trans (submitted)

  6. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1α is essential for myeloid cell mediated inflammation. Cell 112:645–657

    PubMed  Article  CAS  Google Scholar 

  7. Crichton RR (2009) Inorganic biochemistry of iron from molecular mechanisms to clinical consequences, 3rd edn. Wiley, Chichester, p 461

    Google Scholar 

  8. Dissanayake DS, Kumarasiri PV, Nugegoda DB, Dissanayake DM (2009) The association of iron status with educational performance and intelligence among adolescents. Ceylon Med J 54:75–79

    PubMed  CAS  Google Scholar 

  9. Doherty CP (2007) Host–pathogen interactions: the role of iron. J Nutr 137:1341–1344

    PubMed  CAS  Google Scholar 

  10. Drakesmith H, Chen N, Ledermann H, Screaton G, Townsend A, Xu XN (2005) HIV-1 Nef down-regulates the hemochromatosis protein HFE manipulating iron homeostasis. Proc Natl Acad Sci USA 102:11017–11022

    PubMed  Article  CAS  Google Scholar 

  11. Engelhart MJ, Geerlings MI, Meijer J, Kilaan A, Ruitenberg A, van Swieten J, Stijnen T, Hofman A, Witteman JC, Breteler MM (2009) Inflammatory proteins in plasma and the risk of dementia. Arch Neurol 61:668–672

    Article  Google Scholar 

  12. Ferrucci L, Semba RD, Guralnik JM, Ershler WB, Bandinelli S, Patel KV, Sun K, Woodman RC, Andrews NC, Cotter RJ, Ganz T, Nemeth E, Longo DL (2010) Proinflammatory state hepcidin and anaemia in older persons. Blood 115:3810–3816

    PubMed  Article  CAS  Google Scholar 

  13. Gerhard GS, Levin KA, Goldstien J, Wojnar MM, Chorney MJ, Belchis DA (2001) Vibrio vulnificus septicaemia in a patient with the haemochromatosis HFE C282Y mutation. Arch Pathol Lab Med 125:1107–1109

    PubMed  CAS  Google Scholar 

  14. Gimeno D, Kivimaki M, Brunner EJ, Elovainio M, De Vogli R, Steptoe A, Kumari M, Lowe GD, Rumley A, Marmot MG, Ferrie JE (2009) Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12 year follow-up of the Whitehall II study. Psychol Med 39:413–423

    PubMed  Article  CAS  Google Scholar 

  15. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore mediated iron acquisition. Mol Cell 10:1033–1043

    PubMed  Article  CAS  Google Scholar 

  16. Gordeuk VR, Ballou S, Lozanski G, Brittenham GM (1992) Decreased concentrations of tumor necrosis factor-alpha in supernatants of monocytes from homozygotes for hereditary hemochromatosis. Blood 79:1855–1860

    PubMed  CAS  Google Scholar 

  17. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    PubMed  Article  Google Scholar 

  18. Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C (2007) Peripheral inflammatory cytokines as biomarkers in Alzheimer disease and mild cognitive impairment. Neurodegener Dis 4:406–412

    PubMed  Article  CAS  Google Scholar 

  19. Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG (2001) Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107:1381–1386

    PubMed  Article  CAS  Google Scholar 

  20. Kaltschmidt B, Kaltschmidt C (2000) Constitutive NF-kappa B activity is modulated via neuron–astroglia interaction. Exp Brain Res 130:100–104

    PubMed  Article  CAS  Google Scholar 

  21. Krause A, Neitz S, Maget HJ et al (2000) LEAP-1 a novel highly disulphide-bonded human peptide exhibits antimicrobial activity. FEBS Lett 480:147–150

    PubMed  Article  CAS  Google Scholar 

  22. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    PubMed  Article  CAS  Google Scholar 

  23. Lee P, Peng H, Gelbart T, Beutler E (2004) The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA 101:9263–9265

    PubMed  Article  CAS  Google Scholar 

  24. Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin 1 and interleukin 6. Proc Natl Acad Sci USA 102:1906–1910

    PubMed  Article  CAS  Google Scholar 

  25. Legrand D, Mazurier J (2010) A critical review of the roles of host. Biometals 23:365–376

    PubMed  Article  CAS  Google Scholar 

  26. Liu XB, Nguyen NB, Marquess KD, Yang F, Haile DJ (2005) Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 35:47–56

    PubMed  Article  CAS  Google Scholar 

  27. Loiarro M, Ruggiero V, Sette C (2010) Targeting TLR/IL-1R signalling in human disease. Mediators Inflamm. doi:10.1155/2010/674363

  28. Magaki S, Yellon SM, Muelier C, Kirsch WM (2008) Immunophenotypes in the circulation of patients with mild cognitive impairment. J Psychiatr Res 42:240–246

    PubMed  Article  Google Scholar 

  29. McDonald CJ, Jones MK, Wallace DF, Summerville L, Nawaratna S, Subramaniam VN (2010) Increased iron stores correlates with worse disease outcomes in a mouse model of Schistosomiasis infection. PloS ONE 5(3):e9594 doi:10.1371/journal.pone.0009594

  30. Moura E, Noordermeer MA, Verhoeven N, Verheul AF, Marx JJ (1998) Iron release from human monocytes after erythrophagocytosis in vitro: an investigation in normal subjects and hereditary hemochromatosis patients. Blood 92:2511–2519

    PubMed  CAS  Google Scholar 

  31. Muckenthaler MU (2008) Fine tuning of hepcidin expression by positive and negative regulators. Cell Metab 8:1–3

    PubMed  Article  CAS  Google Scholar 

  32. Nairz M, Theurl I, Ludwiczek S, Theurl M, Mair SM, Fritsche G, Weiss G (2007) The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol 9:2126–2140

    PubMed  Article  CAS  Google Scholar 

  33. Nairz M, Fritsche G, Brunner P, Talasz H, Hantke K, Weiss G (2008) Interferon-gamma limits the availability of iron for intramacrophage Salmonella typhimurium. Eur J Immunol 38:1923–1936

    PubMed  Article  CAS  Google Scholar 

  34. Nairz M, Theurl I, Schroll A, Theuri M, Fritsche G, Lindner E, Seifert M, Crouch ML, Hantke K, Akira S, Fang FC, Weiss G (2009) Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114:3642–3651

    PubMed  Article  CAS  Google Scholar 

  35. Nemeth E, Rivera S, Gabayan V et al (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulating hormone hepcidin. J Clin Invest 113:1271–1276

    PubMed  CAS  Google Scholar 

  36. Niederkofler V, Salie R, Arber S (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 115:2180–2186

    PubMed  Article  CAS  Google Scholar 

  37. Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE (2002) Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-gamma and hemochromatosis. J Biol Chem 277:49727–49734

    PubMed  Article  CAS  Google Scholar 

  38. Olakanmi O, Schlesinger LS, Britigan BE (2007) Hereditary haemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. J Leukoc Biol 81:195–204

    PubMed  Article  CAS  Google Scholar 

  39. Oppenheimer SJ (2001) Iron and its relation to immunity and infectious disease. J Nutr 131:616S–633S

    PubMed  CAS  Google Scholar 

  40. Pan X, Tamilselvam B, Hansen EJ, Daefler S (2010) Modulation of iron homeostasis in macrophages by bacterial intracellular pathogens. BMC Microbiol 10:64

    Google Scholar 

  41. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin a urinary antimicrobial peptide synthesise in the liver. J Biol Chem 276:7806–7810

    PubMed  Article  CAS  Google Scholar 

  42. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA et al (2005) HIF-1α expression regulates the bacterial capacity of phagocytes. J Clin Invest 115:1806–1815

    PubMed  Article  CAS  Google Scholar 

  43. Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizel V (2006) TLR-4 dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107:3727–3732

    PubMed  Article  CAS  Google Scholar 

  44. Porto G, De Sousa M (2007) Iron overload and immunity. World J Gastroenterol 13:4707–4715

    PubMed  CAS  Google Scholar 

  45. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Freidman LF et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signalling proteins. Nat Med 13:1359–1362

    PubMed  Article  CAS  Google Scholar 

  46. Rioux FM, LeBlanc CP (2007) Iron supplementation during pregnancy: what are the risks and benefits of current practices? Appl Physiol Nutr Metab 32:282–288

    PubMed  Article  CAS  Google Scholar 

  47. Roy CN, Custodio AO, de Graaf J et al (2004) An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nat Genet 36:481–485

    PubMed  Article  CAS  Google Scholar 

  48. Silvestri L, Pagani A, Camaschella C (2008) Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111:924–931

    PubMed  Article  CAS  Google Scholar 

  49. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP (2007) Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 82:934–945

    PubMed  Article  CAS  Google Scholar 

  50. Stolzfus R, Dreyfuss M (1988) International Nutritional Anaemia Consultative Group. ILSI Press, Washington, DC

    Google Scholar 

  51. Tacchini L, Gammella E, De Ponti C, Recalcati S, Cairo G (2008) Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem 283:20674–20686

    PubMed  Article  CAS  Google Scholar 

  52. Theul I, Finkenstedt A, Scholl A, Nairz M et al (2010) Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia. Br J Haematol 148:449–455

    Article  Google Scholar 

  53. Wang L, Cherayil BJ (2009) Ironing out the wrinkles in host defence interactions between iron homeostasis and innate immunity. J Innate Immun 1:455–464

    PubMed  Article  CAS  Google Scholar 

  54. Wang L, Johnson EE, Shi HN, Walker WA, Wessling-Resnick M, Cherayil BJ (2008) Attenuated inflammatory responses in haemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. J Immunol 181:2723–2731

    PubMed  CAS  Google Scholar 

  55. Wang L, Harrington L, Trebicka E, Shi HN, Kagan JC, Hong CC, Lin HY, Babitt JL, Cherayil BJ (2009) Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J Clin Invest 119:3322–3328

    PubMed  CAS  Google Scholar 

  56. Ward RJ, Wilmet R, Legssyer R, Leroy D, Crichton RR, Srai K, Pirreaux C, Hue L, Piette J, Klein D, Summer K (2009) Iron supplementation to pregnant rats: effects on pregnancy outcome, iron homeostasis and immune function. Biometals 22:211–223

    PubMed  Article  CAS  Google Scholar 

  57. Wessling-Resnick M (2010) Iron homeostasis and the inflammatory response. Annu Rev Nutr 30:105–122

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of IREB (RJW), and ERAB (RJW, DTD) and COST D34 are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberta J. Ward.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ward, R.J., Crichton, R.R., Taylor, D.L. et al. Iron and the immune system. J Neural Transm 118, 315–328 (2011). https://doi.org/10.1007/s00702-010-0479-3

Download citation

Keywords

  • Macrophage
  • Iron
  • Hepcidin
  • Ferroportin
  • Inflammation