Skip to main content
Log in

A subchronic application period of glucocorticoids leads to rat cognitive dysfunction whereas physostigmine induces a mild neuroprotection

  • Basic Neurosciences, Genetics and Immunology - Original Paper
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The cholinergic neurotransmitter system and prolonged glucocorticoid-induced stress can affect cognitive functions in opposite ways. While pharmacological enhancement of cholinergic neurotransmission is known to induce neuroprotective effects, chronic glucocorticoids impair cognitive functions. Up to now, there is no consensus as to whether a subchronic stress period of several days would affect cognitive function. The goal of this study was to investigate whether or not repeated applications of physostigmine over 3 days lead to protective effects on rat spatial cognitive abilities in contrast to the deteriorating effect on rat cognitive function after corticosterone treatment. Furthermore, we wanted to investigate in what extent this cognition-modulating effect is associated with rat cerebral acetylcholinergic system. Male adult rats (n = 40) were randomly divided into four groups with n = 10 per group: (I) placebo-, (II) corticosterone- (15 mg/day), (III) physostigmine- (0.014 mg/day), and (IV) physostigmine + corticosterone-treated rats. Body mass and plasma corticosterone concentrations were measured. Psychometric investigations were conducted using a Morris water maze before and after a subchronic treatment. In cerebral tissue, ACh and acetylcholinesterase (AChE) content and ACh receptor density were determined. Tissue corticosterone concentration was measured in cerebral cortex, hippocampus, and adrenal glands. In corticosterone-treated rats, reduced spatial cognitive abilities were associated with a significant increase in plasma (+25%) and cerebral corticosterone levels (+350%) parallelled by a significant reduction in adrenal gland concentrations (−84%) as compared to placebo. Repeated physostigmine injections improved rats’ spatial memory and increased cerebral ACh and AChE content (p < 0.05). When physostigmine was administered at the same time as corticosterone (group IV), it was not able to reverse the corticosterone effect. A significant correlation was detected between cerebral AChE and corticosterone concentrations as well as between AChE and psychometric parameters. We conclude that subchronic exogenous corticosterone administration induces memory dysfunction whereas physostigmine exerts cognitive-enhancing effects if given for 3 days. An apparently existing interaction between glucocorticoid excess and ACh metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aracava Y, Deshpande SS, Rickett DL, Brossi A, Schonenberger B, Albuquerque EX (1987) The molecular basis of anticholinesterase actions on nicotinic and glutamatergic synapses. Ann NY Acad Sci 505:226–255

    Article  CAS  PubMed  Google Scholar 

  • Bardgett ME, Taylor GT, Csernansky JG, Newcomer JW, Nock B (1994) Chronic corticosterone treatment impairs spontaneous alternation behavior in rats. Behav Neural Biol 61:186–190

    Article  CAS  PubMed  Google Scholar 

  • Bertrand D, Valera S, Bertrand S, Ballivet M, Rungger D (1991) Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 2:277–280

    Article  CAS  PubMed  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev CD005593

  • Braun S, Askanas V, Engel WK, Ibrahim EN (1993) Long-term treatment with glucocorticoids increases synthesis and stability of junctional acetylcholine receptors on innervated cultured human muscle. J Neurochem 60:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Brown DV, Heller F, Barkin R (2004) Anticholinergic syndrome after anesthesia: a case report and review. Am J Ther 11:144–153

    Article  PubMed  Google Scholar 

  • Coburn-Litvak PS, Pothakos K, Tata DA, McCloskey DP, Anderson BJ (2003) Chronic administration of corticosterone impairs spatial reference memory before spatial working memory in rats. Neurobiol Learn Mem 80:11–23

    Article  CAS  PubMed  Google Scholar 

  • Coelho F, Birks J (2001) Physostigmine for Alzheimer’s disease. Cochrane Database Syst Rev CD001499

  • Dai J, Buijs R, Swaab D (2004) Glucocorticoid hormone (cortisol) affects axonal transport in human cortex neurons but shows resistance in Alzheimer’s disease. Br J Pharmacol 143:606–610

    Article  CAS  PubMed  Google Scholar 

  • de Haan M, van Herck H, Tolboom JB, Beynen AC, Remie R (2002) Endocrine stress response in jugular-vein cannulated rats upon multiple exposure to either diethyl-ether, halothane/O2/N2O or sham anaesthesia. Lab Anim 36:105–114

    Article  PubMed  Google Scholar 

  • de Kloet ER, Oitzl MS, Joels M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426

    Article  PubMed  Google Scholar 

  • De Sarno P, Giacobini E (1989) Modulation of acetylcholine release by nicotinic receptors in the rat brain. J Neurosci Res 22:194–200

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Poirier R, Wollmer MA, Grimaldi LM, Tsolaki M, Streffer JR, Hock C, Nitsch RM, Mohajeri MH, Papassotiropoulos A (2004) Glucocorticoid-related genetic susceptibility for Alzheimer's disease. Hum Mol Genet 13:47–52

    Google Scholar 

  • Diamond DM, Park CR, Heman KL, Rose GM (1999) Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9:542–552

    Article  CAS  PubMed  Google Scholar 

  • Erb C, Troost J, Kopf S, Schmitt U, Loffelholz K, Soreq H, Klein J (2001) Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J Neurochem 77:638–646

    Article  CAS  PubMed  Google Scholar 

  • Feldmann RE Jr, Maurer MH, Hunzinger C, Lewicka S, Buergers HF, Kalenka A, Hinkelbein J, Broemme JO, Seidler GH, Martin E, Plaschke K (2008) Reduction in rat phosphatidylethanolamine binding protein-1 (PEBP1) after chronic corticosterone treatment may be paralleled by cognitive impairment: a first study. Stress 11:134–147

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Vidal D, Bennett EL, Orme AE, Vasquez S, Jarvik ME (1978) Memory facilitating and anti-amnesic effects of corticosteroids. Pharmacol Biochem Behav 8:81–87

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Chiba Y, Sakai H, Misawa M (2008) Glucocorticoids inhibited airway hyperresponsiveness through downregulation of CPI-17 in bronchial smooth muscle. Eur J Pharmacol 591:231–236

    Article  CAS  PubMed  Google Scholar 

  • Hauger RL, Millan MA, Catt KJ, Aguilera G (1987) Differential regulation of brain and pituitary corticotropin-releasing factor receptors by corticosterone. Endocrinology 120:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B, Seckl JR (2006) Do corticosteroids damage the brain? J Neuroendocrinol 18:393–411

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M, Mautner S, Wente MN, Encke J, Werner J, Dalpke AH, Stremmel W, Nawroth PP, Martin E, Krammer PH, Bierhaus A, Weigand MA (2008) Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 36:404–408

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205

    CAS  PubMed  Google Scholar 

  • Joels M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10:152–158

    Article  PubMed  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt IC, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER (2001) Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142:2686–2694

    Google Scholar 

  • Karuri AR, Engelking LR, Kumar MS (1998) Effects of halothane and methoxyflurane on the hypothalamic-pituitary-adrenal axis in rat. Brain Res Bull 47:205–209

    Article  CAS  PubMed  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377

    Article  CAS  PubMed  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1999) Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem Biol Interact 119–120:349–360

    Article  PubMed  Google Scholar 

  • Li Y, Camp S, Rachinsky TL, Bongiorno C, Taylor P (1993) Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J Biol Chem 268:3563–3572

    CAS  PubMed  Google Scholar 

  • Maelicke A, Coban T, Schrattenholz A, Schroder B, Reinhardt-Maelicke S, Storch A, Godovac-Zimmermann J, Methfessel C, Pereira EF, Albuquerque EX (1993) Physostigmine and neuromuscular transmission. Ann NY Acad Sci 681:140–154

    Article  CAS  PubMed  Google Scholar 

  • Mandel RJ, Thal LJ (1988) Physostigmine improves water maze performance following nucleus basalis magnocellularis lesions in rats. Psychopharmacology (Berl) 96:421–425

    Article  CAS  Google Scholar 

  • Marklund N, Peltonen M, Nilsson TK, Olsson T (2004) Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke. J Intern Med 256:15–21

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205–216

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, Ben-Arie N, Soreq H (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295:508–512

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Murialdo G, Nobili F, Rollero A, Gianelli MV, Copello F, Rodriguez G, Polleri A (2000) Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. Neuropsychobiology 42:51–57

    Article  CAS  PubMed  Google Scholar 

  • Newcomer JW, Craft S, Hershey T, Askins K, Bardgett ME (1994) Glucocorticoid-induced impairment in declarative memory performance in adult humans. J Neurosci 14:2047–2053

    CAS  PubMed  Google Scholar 

  • O’Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 168:679–687

    Article  PubMed  Google Scholar 

  • Osmanovic J, Plaschke K, Salkovic-Petrisic M, Grunblatt E, Riederer P, Hoyer S (2010) Chronic exogenous corticosterone administration generates an insulin-resistant brain state in rats. Stress 13:123–131

    Article  CAS  PubMed  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  CAS  PubMed  Google Scholar 

  • Pinnock SB, Herbert J (2001) Corticosterone differentially modulates expression of corticotropin releasing factor and arginine vasopressin mRNA in the hypothalamic paraventricular nucleus following either acute or repeated restraint stress. Eur J Neurosci 13:576–584

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Feindt J, Djuric Z, Heiland S, Autschbach F, Lewicka S, Martin E, Bardenheuer HJ, Nawroth PP, Bierhaus A (2006) Chronic corticosterone-induced deterioration in rat behaviour is not paralleled by changes in hippocampal NF-kappaB-activation. Stress 9:97–106

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Staub J, Ernst E, Marti HH (2008) VEGF overexpression improves mice cognitive abilities after unilateral common carotid artery occlusion. Exp Neurol 214:285–292

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Frauenknecht K, Sommer C, Heiland S (2009) A single systemic transient hypotension induces long-term changes in rats’ MRI parameters and behavior: relation to aging. Neurol Res 31:304–312

    Article  PubMed  Google Scholar 

  • Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 21:293–307

    Article  CAS  PubMed  Google Scholar 

  • Rhodes ME, O’Toole SM, Wright SL, Czambel RK, Rubin RT (2001) Sexual diergism in rat hypothalamic-pituitary-adrenal axis responses to cholinergic stimulation and antagonism. Brain Res Bull 54:101–113

    Article  CAS  PubMed  Google Scholar 

  • Riley EP, Barron S, Driscoll CD, Hamlin RT (1986) The effects of physostigmine on open-field behavior in rats exposed to alcohol prenatally. Alcohol Clin Exp Res 10:50–53

    Article  CAS  PubMed  Google Scholar 

  • Sadowski RN, Jackson GR, Wieczorek L, Gold PE (2009) Effects of stress, corticosterone, and epinephrine administration on learning in place and response tasks. Behav Brain Res 205:19–25

    Google Scholar 

  • Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917–930

    Article  CAS  PubMed  Google Scholar 

  • Sandi C, Loscertales M (1999) Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs chronic corticosterone treatments. Brain Res 828:127–134

    Article  CAS  PubMed  Google Scholar 

  • Shaked I, Zimmerman G, Soreq H (2008) Stress-induced alternative splicing modulations in brain and periphery: acetylcholinesterase as a case study. Ann NY Acad Sci 1148:269–281

    Article  CAS  PubMed  Google Scholar 

  • Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D, Korner M, Ebstein RP, Soreq H (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Somani SM, Khalique A (1986) Distribution and pharmacokinetics of physostigmine in rat after intramuscular administration. Fundam Appl Toxicol 6:327–334

    Article  CAS  PubMed  Google Scholar 

  • Somani SM, Khalique A (1987) Pharmacokinetics and pharmacodynamics of physostigmine in the rat after intravenous administration. Drug Metab Dispos 15:627–633

    CAS  PubMed  Google Scholar 

  • Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW, Soreq H (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 97:8647–8652

    Article  CAS  PubMed  Google Scholar 

  • Stratakis CA, Chrousos GP (1995) Neuroendocrinology and pathophysiology of the stress system. Ann NY Acad Sci 771:1–18

    Article  CAS  PubMed  Google Scholar 

  • Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  CAS  PubMed  Google Scholar 

  • van Dyck CH, Newhouse P, Falk WE, Mattes JA (2000) Extended-release physostigmine in Alzheimer disease: a multicenter, double-blind, 12-week study with dose enrichment Physostigmine Study Group. Arch Gen Psychiatry 57:157–164

    Article  PubMed  Google Scholar 

  • van Marum RJ (2008) Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 22:265–274

    Article  PubMed  Google Scholar 

  • Vanitallie TB (2002) Stress: a risk factor for serious illness. Metabolism 51:40–45

    Article  CAS  PubMed  Google Scholar 

  • Vecsei P (1979) Glucocorticoids: cortisol, cortisone, corticosterone, compound S and their metabolites. In: Jaffe BM, Behrmann HR (eds) Methods of hormone radioimmunoassays. Academic Press, New York, pp 767–792

    Google Scholar 

  • Vollmayr B, Faust H, Lewicka S, Henn FA (2001) Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 6:471–474, 358

    Google Scholar 

  • Wolf OT (2003) HPA axis and memory. Best Pract Res Clin Endocrinol Metab 17:287–299

    Article  CAS  PubMed  Google Scholar 

  • Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  CAS  PubMed  Google Scholar 

  • Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1999) The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology (Berl) 145:260–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Roland Galmbacher, Sigrun Himmelsbach, Lubomira Majernikova and Klaus Stefan for their support.

Conflict of Interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze Plaschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wüppen, K., Oesterle, D., Lewicka, S. et al. A subchronic application period of glucocorticoids leads to rat cognitive dysfunction whereas physostigmine induces a mild neuroprotection. J Neural Transm 117, 1055–1065 (2010). https://doi.org/10.1007/s00702-010-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0441-4

Keywords

Navigation