Skip to main content
Log in

Adenosine receptor type 2a is differently modulated by nicotine in dorsal brainstem cells of Wistar Kyoto and spontaneously hypertensive rats

  • Basic Neurosciences, Genetics and Immunology-Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A2a (A2aR). The A2aR modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A2aR binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A2aR in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A2aR binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A2aR binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A2aR binding and increased protein levels, as well as, induced a differential modulation in A2aR mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A2aR as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A2aR of SHR cells which differ from WKY and nicotine differentially modulates A2aR in dorsal brainstem cells of SHR and WKY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altman JA, Bayer AS (1995) Atlas of prenatal rat brain development. CRC Press, Boca Raton

    Google Scholar 

  • Barraco RA, El-Ridi MR, Ergene E, Phillis JW (1991) Adenosine receptor subtypes in the brainstem mediate distinct cardiovascular response patterns. Brain Res Bull 26:59–84

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, O’leary DS, Ergene E, Scislo TJ (1996) Activation of purinergic receptor subtypes in the nucleus tractus solitarius elicits specific regional vascular response patterns. J Auton Nerv Syst 59:113–124

    Article  CAS  PubMed  Google Scholar 

  • Belardinelli L, Shryock JC, Snowdy S, Zhang Y, Monopoli A, Lozza G, Ongini E, Olsson RA, Dennis DM (1998) The A2A adenosine receptor mediates coronary vasodilation. J Pharmacol Exp Ther 284:1066–1073

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Yang X (1993) Mechanism of the hypertensive response to central injection of nicotine in conscious rats. Brain Res Bull 32:35–41

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  CAS  PubMed  Google Scholar 

  • Carrettiero DC, Fior-Chadi DR (2004) Adenosine A1 receptor distribution in the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J Neural Transm 111:465–473

    Article  CAS  PubMed  Google Scholar 

  • Carrettiero DC, Fior-Chadi DR (2008) Age-dependent changes in adenosine A1 receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats. J Neural Transm 115:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Melendez M, Krstew E, Lawrence AJ, Jarrott B (1994) Presynaptic adenosine A2a receptors on soma and central terminals of rat vagal afferent neurons. Brain Res 652:137–144

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200

    CAS  PubMed  Google Scholar 

  • Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU (2001) Role of the medulla oblongata in hypertension. Hypertension 38:549–554

    CAS  PubMed  Google Scholar 

  • Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    CAS  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  • Dhar FN, McIntosh JM, Sapru HN (2000) Receptor subtypes mediating depressor responses to microinjections of nicotine into medial NTS of rats. Am J Physiol Regul Integr Comp Physiol 279:132–140

    Google Scholar 

  • Dmitrieva RI, Hinojos CA, Grove ML, Bell RJ, Boerwinkle E, Fornage M, Doris PA (2009) Genome-wide identification of allelic expression in hypertensive rats. Circ Cardiovasc Genet 2:106–115

    Article  CAS  PubMed  Google Scholar 

  • Doggrell AS, Brown   (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39:89–105

    Article  CAS  PubMed  Google Scholar 

  • Fenster CP, Beckman ML, Parker JC, Sheffield EB, Whitworth TL, Quick MW, Lester RA (1999a) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 55:432–443

    CAS  PubMed  Google Scholar 

  • Fenster CP, Hicks JH, Beckman ML, Covernton PJ, Quick MW, Lester RA (1999b) Desensitization of nicotinic receptors in the central nervous system. Ann N Y Acad Sci 868:620–623

    Article  CAS  PubMed  Google Scholar 

  • Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA (1999c) Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 19:4804–4814

    CAS  PubMed  Google Scholar 

  • Ferrari MF, Fior-Chadi DR (2007) Chronic nicotine administration. Analysis of the development of hypertension and glutamatergic neurotransmission. Brain Res Bull 72:215–224

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MF, Raizada MK, Fior-Chadi DR (2007) Nicotine modulates the renin-angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of Wistar Kyoto and spontaneously hypertensive rats. J Mol Neurosci 33:284–293

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MF, Raizada MK, Fior-Chadi DR (2008) Differential regulation of the renin-angiotensin system by nicotine in WKY and SHR glia. J Mol Neurosci 35:151–160

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MF, Reis EM, Matsumoto JP, Fior-Chadi DR (2009) Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol 29(3):287–308

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MFR, Reis EM, Matsumoto JPP, Fior-Chadi DR (2010) Transcriptome analysis of nicotine-exposed cells from the brainstem of neonate spontaneously hypertensive and Wistar Kyoto rats. Pharmacogenomics J 10:134–160

    Article  CAS  PubMed  Google Scholar 

  • Ferre S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I (2007) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JP, Stoker JB, Mary DA (1999) Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation 100:1305–1310

    CAS  PubMed  Google Scholar 

  • Grilli M, Parodi M, Raiteri M, Marchi M (2005) Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J Neurochem 93:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Grisk O, Rose HJ, Lorenz G, Rettig R (2002) Sympathetic-renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol 283:441–450

    Google Scholar 

  • Gueorguiev VD, Zeman RJ, Hiremagalur B, Menezes A, Sabban EL (1999) Differing temporal roles of Ca2+ and cAMP in nicotine-elicited elevation of tyrosine hydroxylase mRNA. Am J Physiol 276:54–65

    Google Scholar 

  • Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  PubMed  Google Scholar 

  • Haschemi A, Wagner O, Marculescu R, Wegiel B, Robson SC, Gagliani N, Gallo D, Chen JF, Bach FH, Otterbein LE (2007) Cross-regulation of carbon monoxide and the adenosine A2a receptor in macrophages. J Immunol 178:5921–5929

    CAS  PubMed  Google Scholar 

  • Ho WY, Lu PJ, Hsiao M, Hwang HR, Tseng YC, Yen MH, Tseng CJ (2008) Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation 117:773–780

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Yao L, Hopf FW, Fan P, Jiang Z, Bonci A, Diamond I (2007) Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors. J Pharmacol Exp Ther 322:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kane JK, Konu O, Ma JZ, Li MD (2004) Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. Brain Res Mol Brain Res 132:181–191

    Article  CAS  PubMed  Google Scholar 

  • Kivell BM, Mcdonald FJ, Miller JH (2001) Method for serum-free culture of late fetal and early postnatal rat brainstem neurons. Brain Res Brain Res Protoc 6:91–99

    Article  CAS  PubMed  Google Scholar 

  • Li MD, Kane JK, Parker SL, Mcallen K, Matta SG, Sharp BM (2000) Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Res 867:157–164

    Article  CAS  PubMed  Google Scholar 

  • Linden J (2005) Adenosine in tissue protection and tissue regeneration. Mol Pharmacol 67:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lo WC, Jan CR, Wu SN, Tseng CJ (1998) Cardiovascular effects of nitric oxide and adenosine in the nucleus tractus solitarii of rats. Hypertension 32:1034–1038

    CAS  PubMed  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999) Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2a receptor in limbic cortex, but not striatum, of aged rats. J Neurochem 73:1733–1738

    Article  CAS  PubMed  Google Scholar 

  • Matta SG, Valentine JD, Sharp BM (1997) Nicotine activates NPY and catecholaminergic neurons in brainstem regions involved in ACTH secretion. Brain Res 759:259–269

    Article  CAS  PubMed  Google Scholar 

  • Mosqueda-Garcia R, Tseng CJ, Appalsamy M, Beck C, Robertson D (1991) Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18:494–502

    CAS  PubMed  Google Scholar 

  • Mulle C, Choquet D, Korn H, Changeux JP (1992a) Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8:135–143

    Article  CAS  PubMed  Google Scholar 

  • Mulle C, Lena C, Changeux JP (1992b) Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8:937–945

    Article  CAS  PubMed  Google Scholar 

  • Neff RA, Humphrey J, Mihalevich M, Mendelowitz D (1998) Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons. Circ Res 83:1241–1247

    CAS  PubMed  Google Scholar 

  • Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88

    Article  CAS  PubMed  Google Scholar 

  • Puig O, Tjian R (2005) Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 19:2435–2446

    Article  CAS  PubMed  Google Scholar 

  • Rezvani K, Teng Y, Shim D, De Biasi M (2007) Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci 27:10508–10519

    Article  CAS  PubMed  Google Scholar 

  • Scislo TJ, O’leary DS (2005) Purinergic mechanisms of the nucleus of the solitary tract and neural cardiovascular control. Neurol Res 27:182–194

    Article  CAS  PubMed  Google Scholar 

  • Scislo TJ, O’leary DS (2006) Vasopressin V1 receptors contribute to hemodynamic and sympathoinhibitory responses evoked by stimulation of adenosine A2a receptors in NTS. Am J Physiol Heart Circ Physiol 290:1889–1898

    Article  Google Scholar 

  • Scislo TJ, Tan N, O’leary DS (2005) Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors. Am J Physiol Heart Circ Physiol 288:638–649

    Article  Google Scholar 

  • Sebastiao AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341–346

    Article  CAS  PubMed  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    CAS  PubMed  Google Scholar 

  • Seubert JM, Xu F, Graves JP, Collins JB, Sieber SO, Paules RS, Kroetz DL, Zeldin DC (2005) Differential renal gene expression in prehypertensive and hypertensive spontaneously hypertensive rats. Am J Physiol Renal Physiol 289:F522–F561

    Article  Google Scholar 

  • Smith DV, Uteshev VV (2008) Heterogeneity of nicotinic acetylcholine receptor expression in the caudal nucleus of the solitary tract. Neuropharmacology 54:445–453

    Article  CAS  PubMed  Google Scholar 

  • Sved AF, Gordon FJ (1994) Amino acids as central neurotransmitters in the baroreceptor reflex pathway. News Physiol Sci 9:243–246

    CAS  Google Scholar 

  • Sved AF, Ito S, Sved JC (2003) Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr Hypertens Rep 5:262–268

    Article  PubMed  Google Scholar 

  • Thomas T, St Lambert JH, Dashwood MR, Spyer KM (2000) Localization and action of adenosine A2a receptors in regions of the brainstem important in cardiovascular control. Neuroscience 95:513–518

    Article  CAS  PubMed  Google Scholar 

  • Tseng CJ, Biaggioni I, Appalsamy M, Robertson D (1988) Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11:191–197

    CAS  PubMed  Google Scholar 

  • Turner ME, Farkas J, Dunmire J, Ely D, Milsted A (2009) Which Sry locus is the hypertensive Y chromosome locus? Hypertension 53:430–435

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Kakehata S, Akaike N (1993) Nicotinic acetylcholine receptor in dissociated rat nucleus tractus solitarii neurons. Neurosci Lett 149:15–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Fundacao de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP) and Conselho Nacional de Desenvolvimento e Tecnologia (CNPq). J. P. P. M received a mastering fellowship from Coordenacao de aperfeiçoamento de pessoal de nivel superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Rejane Fior-Chadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Matsumoto, J.P.P., de Ferrari, M.F.R. & Fior-Chadi, D.R. Adenosine receptor type 2a is differently modulated by nicotine in dorsal brainstem cells of Wistar Kyoto and spontaneously hypertensive rats. J Neural Transm 117, 799–807 (2010). https://doi.org/10.1007/s00702-010-0417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0417-4

Keywords

Navigation