Skip to main content
Log in

Glycine as a neurotransmitter in the forebrain: a short review

Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Since the late 1970s glycine has been considered an important inhibitory neurotransmitter in brain stem and medulla. The description of its involvement in the mechanism of action of the potent neurotoxin strychnine pushed further the concept of inhibitory transmitter. The significant concentrations of glycine in forebrain motivated investigators to evaluate different aspects of glycinergic transmission under the ontogenetic, physiologic and pathologic standpoints. This review encompasses a few of these aspects as the role of the different glycine receptors (GlyRs) in intracellular chloride balance, glycine transporters, GABA/Glycine co-release, glycine/NMDA receptor interaction, glycine receptors in acute alcohol effects and advocates a more relevant role for glycine as a stimulatory transmitter in forebrain areas. Finally, the possible co-release of glycine and GABA is considered as an important process to understand the role of glycine in forebrain neural transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

References

  • Aguado F, Carmona MA, Pozas E, Aguilo A, Martinez-Guijarro FJ, Alcantara S, Borrell V, Yuste R, Ibanez CF, Soriano E (2003) BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl co-transporter KCC2. Development 130:1267–1280

    Article  CAS  PubMed  Google Scholar 

  • Aguayo LG, Pancetti FC (1994) Ethanol modulation of the gamma-aminobutyric acidA- and glycine-activated Cl current in cultured mouse neurons. J Pharmacol Exp Ther 270:61–69

    CAS  PubMed  Google Scholar 

  • Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ (2004) Changes on the properties of glycine receptors during neuronal development. Brain Res Brain Res Rev 47:33–45

    Article  CAS  PubMed  Google Scholar 

  • Akagi H, Miledi R (1988) Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science 242:270–273

    Article  CAS  PubMed  Google Scholar 

  • Aprison MH, Werman R (1965) The distribution of glycine in cat spinal cord and roots. Life Sci 4:2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Aragon C, Lopez-Corcuera B (2003) Structure, function and regulation of glycine neurotransporters. Eur J Pharmacol 479:249–262

    Article  CAS  PubMed  Google Scholar 

  • Aragon C, Lopez-Corcuera B (2005) Glycine transporters: crucial roles of pharmacological interest revealed by gene deletion. Trends Pharmacol Sci 26:283–286

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M (1988) Localization of glycine receptors in the rat central nervous system: an immunocytochemical analysis using monoclonal antibody. Neuroscience 25:613–624

    Article  CAS  PubMed  Google Scholar 

  • Aubrey KR, Rossi FM, Ruivo R, Alboni S, Bellenchi GC, Le Goff A, Gasnier B, Supplisson S (2007) The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J Neurosci 27:6273–6281

    Article  CAS  PubMed  Google Scholar 

  • Barth A, Nguyen LB, Barth L, Newell DW (2005) Glycine-induced neurotoxicity in organotypic hippocampal slice cultures. Exp Brain Res 161:351–357

    Article  CAS  PubMed  Google Scholar 

  • Bauwe H, Kolukisaoglu U (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54:1523–1535

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  • Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97:1600–1610

    Article  CAS  PubMed  Google Scholar 

  • Billups D, Attwell D (2002) Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells. J Physiol 545:183–198

    Article  CAS  PubMed  Google Scholar 

  • Bormann J, Rundstrom N, Betz H, Langosch D (1993) Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J 12:3729–3737

    CAS  PubMed  Google Scholar 

  • Brown AM (1994) Modulation of the hair cell motor: a possible source of odd-order distortion. J Acoust Soc Am 96:2210–2215

    Article  CAS  PubMed  Google Scholar 

  • Celentano JJ, Gibbs TT, Farb DH (1988) Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Res 455:377–380

    Article  CAS  PubMed  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    CAS  PubMed  Google Scholar 

  • Chen L, Muhlhauser M, Yang CR (2003) Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    Article  CAS  PubMed  Google Scholar 

  • Cheng MH, Cascio M, Coalson RD (2007) Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel. Proteins 68(2):581–593

    Article  CAS  PubMed  Google Scholar 

  • Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    Article  CAS  PubMed  Google Scholar 

  • Crawford DK, Trudell JR, Bertaccini EJ, Li K, Davies DL, Alkana RL (2007) Evidence that ethanol acts on a target in Loop 2 of the extracellular domain of alpha1 glycine receptors. J Neurochem 102:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Maclean RR (2007) Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 31:775–824

    Article  CAS  PubMed  Google Scholar 

  • Davies DL, Trudell JR, Mihic SJ, Crawford DK, Alkana RL (2003) Ethanol potentiation of glycine receptors expressed in Xenopus oocytes antagonized by increased atmospheric pressure. Alcohol Clin Exp Res 27:743–755

    Article  CAS  PubMed  Google Scholar 

  • Davies DL, Crawford DK, Trudell JR, Mihic SJ, Alkana RL (2004) Multiple sites of ethanol action in alpha1 and alpha2 glycine receptors suggested by sensitivity to pressure antagonism. J Neurochem 89:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • De Koninck Y (2007) Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol 7:93–99

    Article  PubMed  CAS  Google Scholar 

  • Delpire E, Mount DB (2002) Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 64:803–843

    Article  CAS  PubMed  Google Scholar 

  • Douce R, Neuburger M (1999) Biochemical dissection of photorespiration. Curr Opin Plant Biol 2:214–222

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057

    CAS  PubMed  Google Scholar 

  • Eggers ED, O’Brien JA, Berger AJ (2000) Developmental changes in the modulation of synaptic glycine receptors by ethanol. J Neurophysiol 84:2409–2416

    CAS  PubMed  Google Scholar 

  • Eulenburg V, Armsen W, Betz H, Gomeza J (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 30:325–333

    Article  CAS  PubMed  Google Scholar 

  • Friauf E, Hammerschmidt B, Kirsch J (1997) Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol 385:117–134

    Article  CAS  PubMed  Google Scholar 

  • Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U (2004) GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887

    Article  CAS  PubMed  Google Scholar 

  • Hernandes MS, de Magalhaes L, Troncone LR (2007) Glycine stimulates the release of labeled acetylcholine but not dopamine nor glutamate from superfused rat striatal tissue. Brain Res 1168:32–37

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the N-methyl-d-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc Natl Acad Sci USA 93:6031–6036

    Article  CAS  PubMed  Google Scholar 

  • Hoch W, Betz H, Becker CM (1989) Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3:339–348

    Article  CAS  PubMed  Google Scholar 

  • Hopkin JM, Neal MJ (1970) Thr release of 14C-glycine from electrically stimulated rat spinal cord slices. Br J Pharmacol 40:136P–138P

    CAS  PubMed  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    CAS  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  • Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392:717–720

    Article  CAS  PubMed  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  CAS  PubMed  Google Scholar 

  • Kuhse J, Schmieden V, Betz H (1990) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J Biol Chem 265:22317–22320

    CAS  PubMed  Google Scholar 

  • Kure S, Tada K, Narisawa K (1997) Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. Jpn J Hum Genet 42:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    Article  CAS  PubMed  Google Scholar 

  • Le Rouzic P, Ivanov TR, Stanley PJ, Baudoin FM, Chan F, Pinteaux E, Brown PD, Luckman SM (2006) KCC3 and KCC4 expression in rat adult forebrain. Brain Res 1110:39–45

    Article  CAS  PubMed  Google Scholar 

  • Leite JF, Gribble B, Randolph N, Cascio M (2002) In vitro interaction of the glycine receptor with the leptin receptor. Physiol Behav 77:565–569

    Article  CAS  PubMed  Google Scholar 

  • Lundberg A, Malmgren K, Schomburg ED (1975) Convergence from Lb, cutaneous and joint afferents in reflex pathways to motoneurones. Brain Res 87:81–84

    Article  CAS  PubMed  Google Scholar 

  • Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  CAS  PubMed  Google Scholar 

  • Maksay G, Laube B, Betz H (2001) Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology 41:369–376

    Article  CAS  PubMed  Google Scholar 

  • Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401–2409

    CAS  PubMed  Google Scholar 

  • Mangin JM, Baloul M, Prado De Carvalho L, Rogister B, Rigo JM, Legendre P (2003) Kinetic properties of the alpha2 homo-oligomeric glycine receptor impairs a proper synaptic functioning. J Physiol 553:369–386

    Article  CAS  PubMed  Google Scholar 

  • Mascia MP, Mihic SJ, Valenzuela CF, Schofield PR, Harris RA (1996) A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol Pharmacol 50:402–406

    CAS  PubMed  Google Scholar 

  • McDearmid JR, Liao M, Drapeau P (2006) Glycine receptors regulate interneuron differentiation during spinal network development. Proc Natl Acad Sci USA 103:9679–9684

    Article  CAS  PubMed  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74

    Article  CAS  PubMed  Google Scholar 

  • Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

    Article  CAS  PubMed  Google Scholar 

  • Neal MJ, Pickles HG (1969) Uptake of 14C glycine by spinal cord. Nature 222:679–680

    Article  CAS  PubMed  Google Scholar 

  • Pace JR, Martin BM, Paul SM, Rogawski MA (1992) High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons. Neurosci Lett 141:97–100

    Article  CAS  PubMed  Google Scholar 

  • Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci USA 103:8465–8468

    Article  CAS  PubMed  Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206

    Article  CAS  PubMed  Google Scholar 

  • Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL (2008) Targets for ethanol action and antagonism in loop 2 of the extracellular domain of glycine receptors. J Neurochem 106:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393

    CAS  PubMed  Google Scholar 

  • Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na–K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol 33:781–795

    Article  CAS  PubMed  Google Scholar 

  • Raiteri L, Stigliani S, Usai C, Diaspro A, Paluzzi S, Milanese M, Raiteri M, Bonanno G (2008) Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochem Int 52:103–112

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Kwok JB, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ (2002) Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11:853–860

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ, Snell RG (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278:24688–24696

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN, Wickens JR (2004) The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 1011:115–128

    Article  CAS  PubMed  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159:747–752

    Article  CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K–Cl cotransporter KCC2. J Neurosci 24:4683–4691

    Article  CAS  PubMed  Google Scholar 

  • Sagne C, El Mestikawy S, Isambert MF, Hamon M, Henry JP, Giros B, Gasnier B (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett 417:177–183

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JT, Gans D, Wenstrup JJ (2008) Glycinergic “inhibition” mediates selective excitatory responses to combinations of sounds. J Neurosci 28:80–90

    Article  CAS  PubMed  Google Scholar 

  • Saransaari P, Oja SS (2009) Mechanisms of glycine release in mouse brain stem slices. Neurochem Res 34:286–294

    Article  CAS  PubMed  Google Scholar 

  • Saul B, Schmieden V, Kling C, Mulhardt C, Gass P, Kuhse J, Becker CM (1994) Point mutation of glycine receptor alpha 1 subunit in the spasmodic mouse affects agonist responses. FEBS Lett 350:71–76

    Article  CAS  PubMed  Google Scholar 

  • Schmieden V, Kuhse J, Betz H (1992) Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation. EMBO J 11:2025–2032

    CAS  PubMed  Google Scholar 

  • Semba J, Kito S, Toru M (1995) Characterisation of extracellular amino acids in striatum of freely moving rats by in vivo microdialysis. J Neural Transm Gen Sect 100:39–52

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva OA (1998) Comparison of glycine- and GABA-evoked currents in two types of neurons isolated from the rat striatum. Neurosci Lett 243:9–12

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Haddrill JL, Lynch JW (2001) A single beta subunit M2 domain residue controls the picrotoxin sensitivity of alphabeta heteromeric glycine receptor chloride channels. J Neurochem 76:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Nevin ST, Haddrill JL, Lynch JW (2003) Asymmetric contribution of alpha and beta subunits to the activation of alphabeta heteromeric glycine receptors. J Neurochem 86:498–507

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Aprison MH (1970) The metabolism in vivo of glycine and serine in eight areas of the rat central nervous system. J Neurochem 17:1461–1475

    Article  CAS  PubMed  Google Scholar 

  • Shiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connell P, Wasmuth JJ (1993) Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5:351–358

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Owens S, Forsythe ID (2000) Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J Physiol 529(Pt 3):681–698

    Article  CAS  PubMed  Google Scholar 

  • Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-d-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322:739–748

    Article  CAS  PubMed  Google Scholar 

  • Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37:375–378

    Article  CAS  PubMed  Google Scholar 

  • Supplisson S, Bergman C (1997) Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes. J Neurosci 17:4580–4590

    CAS  PubMed  Google Scholar 

  • Supplisson S, Chesnoy-Marchais D (2000) Glycine receptor beta subunits play a critical role in potentiation of glycine responses by ICS-205, 930. Mol Pharmacol 58:763–770

    CAS  PubMed  Google Scholar 

  • Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235

    Article  CAS  PubMed  Google Scholar 

  • Tapia JC, Aguayo LG (1998) Changes in the properties of developing glycine receptors in cultured mouse spinal neurons. Synapse 28:185–194

    Article  CAS  PubMed  Google Scholar 

  • van den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. J Neurosci 16:4283–4292

    PubMed  Google Scholar 

  • Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315

    Article  CAS  PubMed  Google Scholar 

  • Vitanova L, Haverkamp S, Wassle H (2004) Immunocytochemical localization of glycine and glycine receptors in the retina of the frog Rana ridibunda. Cell Tissue Res 317:227–235

    Article  CAS  PubMed  Google Scholar 

  • Wester MR, Teasley DC, Byers SL, Saha MS (2008) Expression patterns of glycine transporters (xGlyT1, xGlyT2, and xVIAAT) in Xenopus laevis during early development. Gene Expr Patterns 8:261–270

    Article  CAS  PubMed  Google Scholar 

  • Xu ZL, Byers DM, Palmer FB, Spence MW, Cook HW (1991) Serine utilization as a precursor of phosphatidylserine and alkenyl-(plasmenyl)-, alkyl-, and acylethanolamine phosphoglycerides in cultured glioma cells. J Biol Chem 266:2143–2150

    CAS  PubMed  Google Scholar 

  • Ye JH (2008) Regulation of excitation by glycine receptors. Results Probl Cell Differ 44:123–143

    Article  CAS  PubMed  Google Scholar 

  • Yevenes GE, Moraga-Cid G, Guzman L, Haeger S, Oliveira L, Olate J, Schmalzing G, Aguayo LG (2006) Molecular determinants for G protein betagamma modulation of ionotropic glycine receptors. J Biol Chem 281:39300–39307

    Article  CAS  PubMed  Google Scholar 

  • Zarbin MA, Wamsley JK, Kuhar MJ (1981) Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine. J Neurosci 1:532–547

    CAS  PubMed  Google Scholar 

  • Zeller A, Jurd R, Lambert S, Arras M, Drexler B, Grashoff C, Antkowiak B, Rudolph U (2008) Inhibitory ligand-gated ion channels as substrates for general anesthetic actions. Handb Exp Pharmacol 182:31–51

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Ye JH (2005) The role of G proteins in the activity and ethanol modulation of glycine-induced currents in rat neurons freshly isolated from the ventral tegmental area. Brain Res 1033:102–108

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Polley N, Mathews GC, Delpire E (2008) NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res 79:201–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP—02/04545-7, 07/01066-4) and CNPq—INCT-Tox 2009 to LRPT. MSH is recipient of a PhD fellowship from FAPESP (06/60982-8). We greatly thank MSc Carina T. Rizzi for reviewing the final manuscript for English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfranco R. P. Troncone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandes, M.S., Troncone, L.R.P. Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm 116, 1551–1560 (2009). https://doi.org/10.1007/s00702-009-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0326-6

Keywords

Navigation