Skip to main content

Advertisement

Log in

Single intracerebroventricular injection of botulinum toxin type A produces slow onset and long-term memory impairment in rats

  • Movement Disorder - Short Communication
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

It is generally believed that the cholinergic system plays an important role in normal cognitive functioning. Botulinum toxin is the most potent toxin of the peripheral cholinergic system and today it is used in the treatment of a variety of neurological disorders. However, it is surprising that its effect on cognitive processes has been investigated in only two publications. Short-term effects of the central application of botulinum toxin (BTX) type B have been associated with cognitive impairment in animals, while results with type A are ambiguous. In the present study, we have investigated the duration of memory impairment after an intracerebroventricular administration of BTX-A in rats. Two experiments were performed, lasting 12 and 5 months, respectively. In both experiments, the same dose of BTX-A was applied (2 U/kg) and the Morris water maze test was used in the assessment of memory performance. Results show that a single icv injection of a small dose of BTX-A significantly impairs the water maze performance. In both experiments, impairment was apparently of a slow onset and long lasting (up to 12 months). The length and pattern of attenuation suggest development of dementia-like deficits. In addition to providing a potentially new experimental model of memory impairment, these results question the idea of an intracranial application of BTX in the treatment of CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando S, Kobayashi S, Waki H, Kon K, Fukui F, Tadenuma T, Iwamoto M, Takeda Y, Izumiyama N, Watanabe K, Nakamura H (2002) Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J Neurosci Res 70:519–527

    Article  PubMed  CAS  Google Scholar 

  • Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    Article  PubMed  CAS  Google Scholar 

  • Aoki R (2002) Botulinum neurotoxin serotypes A and B preparations have different safety margins in preclinical models of muscle weakening efficacy and systemic safety. Toxicon 40:923–928

    Article  Google Scholar 

  • Ashton AC, Dolly JO (1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem 50:1808–1816

    Article  PubMed  CAS  Google Scholar 

  • Bach-Rojecky L, Relja M, Lacković Z (2005) Botulinum toxin type A in experimental neuropathic pain. J Neural Transm 112:215–219

    Article  PubMed  CAS  Google Scholar 

  • Bach-Rojecky L, Relja M, Filipović B, Lacković Z (2007) Botulinum toxin type A and cholinergic system. Lijec Vjesn 129:407–414

    PubMed  Google Scholar 

  • Bergquist F, Niazi HS, Nissbrandt H (2002) Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain Res 950:245–253

    Article  PubMed  CAS  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease, Cochrane Database Syst Rev 1, p CD005593

  • Bozzi Y, Costantin L, Antonucci F, Caleo M (2006) Action of botulinum neurotoxins in the central nervous system: antiepileptic effects. Neurotox Res 9:197–203

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Rüb U, Schultz C, Del Tredici K (2006) Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9(3):35–44

    PubMed  CAS  Google Scholar 

  • Cozzolino R, Guaraldi D, Giuliani A, Ghirardi O, Ramacci MT, Angelucci L (1994) Effects of concomitant nicotinic and muscarinic blockade on spatial memory disturbance in rats are purely additive: evidence from the Morris water task. Physiol Behav 56:111–114

    Article  PubMed  CAS  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  PubMed  CAS  Google Scholar 

  • Fishkin RJ, Ince ES, Carlezon WA Jr, Duun RW (1993) D-Cycloserine attenuates scopolamine-induced learning and memory deficits in rats. Behav Neural Biol 59:150–157

    Article  PubMed  CAS  Google Scholar 

  • Gage FD (1985) Performance of hippocampectomized rats in a reference/working memory task: effects of preoperative versus postoperative training. Physiol Psychol 13:235–242

    Google Scholar 

  • Garcia-Alloza M, Zaldua N, Diez-Ariza M et al (2006) Effect of selective cholinergic denervation on the serotonergic system: implications for learning and memory. J Neuropathol Exp Neurol 65:1074–1081

    Article  PubMed  CAS  Google Scholar 

  • Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  CAS  Google Scholar 

  • Handelmann GE, Olton DS (1981) Spatial memory following damage to the hippocampal CA3 pyramidal cells with kainic acid: Impairment and recovery with preoperative training. Brain Res 217:41–58

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Morales W, Mar I, Serrano B, Bermúdez-Rattoni F (2007) Activation of hippocampal postsynaptic muscarinic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25:1581–1588

    Article  PubMed  Google Scholar 

  • Itoh A, Nitta A, Katono Y, Usui M, Naruhashi K, Iida R, Hasegawa T, Nabeshima T (1997) Effects of metrifonate on memory impairment and cholinergic dysfunction in rats. Eur J Pharmacol 322:11–19

    Article  PubMed  CAS  Google Scholar 

  • Jackson JJ, Soliman MR (1996) Effects of tacrine (THA) on spatial reference memory and cholinergic enzymes in specific rat brain navigation task. Life Sci 58:47–54

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2004) Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry 75:951–957

    Article  PubMed  CAS  Google Scholar 

  • Jarrard LE (1978) Selective hippocampal lesions: differential effects on performance by rats of a spatial task with preoperative versus postoperative training. J Comp Physiol Psychol 92:19–27

    Article  Google Scholar 

  • Kao I, Drachman DB, Price DL (1976) Botulinum toxin: mechanism of presynaptic blockade. Science 193:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Kitabatake Y, Hikida T, Watanabe D, Pastan I, Nakanishi S (2003) Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc Natl Acad Sci USA 100:7965–7970

    Article  PubMed  CAS  Google Scholar 

  • Leanza G, Nilsson OG, Wiley RG, Björklund A (1995) Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur J Neurosci 7:329–343

    Article  PubMed  CAS  Google Scholar 

  • Luvisetto S, Marinelli S, Lucchetti F, Marchi F, Cobianchi S, Rossetto O, Montecucco C, Pavone F (2004) Central injection of botulinum neurotoxins: behavioural effects in mice. Behav Pharmacol 15:233–240

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Overmier JB (1998) Present imperfect: a critical review of animal models of the mnemonic impairments in Alzheimer’s disease. Neurosci Biobehav Rev 22:99–120

    Article  PubMed  CAS  Google Scholar 

  • Meunier FA, Schiavo G, Molgó J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105–113

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto M, Narumi S, Nagaoka A, Coyle JT (1989) Effects of continuous infusion of cholinergic drugs on memory impairment in rats with basal forebrain lesions. J Pharmacol Exp Ther 248:825–835

    PubMed  CAS  Google Scholar 

  • Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38:365–395

    PubMed  CAS  Google Scholar 

  • Murray CL, Fibiger HC (1986) Pilocarpine and physostigmine attenuate spatial memory impairments produced by lesions of the nucleus basalis magnocellularis. Behav Neurosci 100:23–32

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 41:268–287

    Article  PubMed  CAS  Google Scholar 

  • Najib A, Pelliccioni P, Gil C, Aguilera J (1999) Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes. J Neurochem 72:1991–1998

    Article  PubMed  CAS  Google Scholar 

  • Nilsson OG, Leanza G, Rosenblad C, Lappi DA, Wiley RG, Björklund A (1992) Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. NeuroReport 3:1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Noble EP, Wurtman RJ, Axelrod J (1967) A simple and rapid method for injecting H3-norepinephrine into the lateral ventricle of the rat brain. Life Sci 6:281–291

    Article  PubMed  CAS  Google Scholar 

  • Opello KD, Stackman RW, Ackerman S, Walsh TJ (1993) AF64A (ethylcholine mustard aziridinium) impairs acquisition and performance of a spatial, but not a cued water maze task: Relation to cholinergic hypofunction. Physiol Behav 54:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Puumala T, Sirvio J, Ruotsalainen S, Riekkinen P Sr (1996) Effects of St-587 and prazosin on water maze and passive avoidance performance of scopolamine-treated rats. Pharmacol Biochem Behav 55:107–115

    Article  PubMed  CAS  Google Scholar 

  • Salmon DP, Butters N (1995) Neurobiology of skill and habit learning. Curr Opin Neurobiol 5:184–190

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 23:28–46

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: What does it mean for learning and memory? Neurobiol Learn Mem 80:245–256

    Article  PubMed  CAS  Google Scholar 

  • Torres EM, Perry TA, Blockland A, Wilkinson LS, Wiley RG, Lappi DA, Dunett SB (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63:95–122

    Article  PubMed  CAS  Google Scholar 

  • Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S, Caccin P, Rossetto O, Bonanno G, Montecucco C, Matteoli M (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142–153

    Article  PubMed  CAS  Google Scholar 

  • von Linstow Roloff E, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146:875–889

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Croatian Ministry of Science, Education and Sport and the Deutscher Akademischer Austausch Dienst (DAAD). We thank Bozica Hrzan for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko Lacković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacković, Z., Rebić, V. & Riederer, P.F. Single intracerebroventricular injection of botulinum toxin type A produces slow onset and long-term memory impairment in rats. J Neural Transm 116, 1273–1280 (2009). https://doi.org/10.1007/s00702-009-0285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0285-y

Keywords

Navigation