Skip to main content
Log in

Acute intrastriatal administration of quinolinic acid affects the expression of the coat protein AP-2 and its interaction with membranes

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Clathrin-coated vesicle endocytosis is thought to be crucial for the maintenance of synaptic transmission and for the cell plasticity at the nervous system. In this study, we demonstrated that acute intrastriatal administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor, induces a decrease of the coat protein AP-2 expression and affects their interaction with membranes. By western blot analysis we observed that at 24 h after QUIN intrastriatal injection, α1 subunit of AP-2 and α2, at lesser extent, were reduced in the striatal membranes. The decrease of both subunits expression was extended to 48 h after treatment, although the soluble proteins were mostly affected. Other areas of the brain were not affected by the treatment, except the cerebellum, where a significant increase of soluble AP-2 (both subunits) was observed at 48 h after injection. Another coat protein, as the phosphoprotein AP-180, was not affected by the injection of QUIN. We also confirmed that QUIN injection causes increasing loss of striatal neurons after the administration of the toxin. We concluded that QUIN may affect the endocytotic machinery of the striatum, by inducing changes in the AP-2 behaviour. Consequently, the internalization of NMDAR and/or AMPAR may be affected, by QUIN, contributing to the excitotoxic effect of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberdi A, Sartor T, Sosa MA (2005) Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins. Biochem Biophys Res Commun 330:695–700

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S (2002) Excessive expression of synaptojanin in brains with Down syndrome. Brain Develop 24:67–72

    Article  Google Scholar 

  • Baskys A, Bayazitov I, Zhu E, Fang L, Wang R (2007) Rab-mediated endocytosis: linking neurodegeneration, neuroprotection, and synaptic plasticity? Ann N Y Acad Sci 1122:313–329

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1988) Systemic approaches to modifying quinolinic acid striatal lesions in rats. J Neurosci 8:3901–3908

    PubMed  CAS  Google Scholar 

  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11:1649–1659

    PubMed  CAS  Google Scholar 

  • Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci 101:3833–3838

    Article  PubMed  CAS  Google Scholar 

  • Brickell KL, Nicholson LFB, Waldvogel HJ, Faull RLM (1999) Chemical and anatomical changes in the striatum and substantia nigra following quinolinic acid lesions in the striatum of the rat: a detailed time course of the cellular and GABAA receptor changes. J Chem Neuroanat 17:75–97

    Article  PubMed  CAS  Google Scholar 

  • Bruyn RPM, Stoof JC (1990) The quinolinic acid hypothesis in Huntington′s chorea. J Neurol Sci 95:29–38

    Article  PubMed  CAS  Google Scholar 

  • Cottrell JR, Borok E, Horvath TL, Nedivi E (2004) CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 44:677–690

    PubMed  CAS  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665

    Article  PubMed  CAS  Google Scholar 

  • Di Figlia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289

    Article  CAS  Google Scholar 

  • Fingerhut A, Von Figura K, Höning S (2001) Binding of AP-2 to sorting signals is modulated by AP-2 phosphorylation. J Biol Chem 276:5476–5482

    Article  PubMed  CAS  Google Scholar 

  • Girard M, Allaire PD, McPherson PS, Blondeau F (2005) Non-stoichometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver. Mol Cell Proteomics 4:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Kalthoff C, Alves J, Urbanke C, Knorr R, Ungewickell EJ (2002) Unusual structural organization of the endocytic proteins AP-180 and epsin1. J Biol Chem 277:8209–8216

    Article  PubMed  CAS  Google Scholar 

  • Keating DJ, Chen C, Pritchard MA (2006) Alzheimer’s disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 5:388–401

    Article  PubMed  CAS  Google Scholar 

  • Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15:705–732

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lavezzari G, McCallum J, Lee R, Roche KW (2003) Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 45:729–737

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP-2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36:661–674

    Article  PubMed  CAS  Google Scholar 

  • Legendre-Guillemin V, Metzler M, Lemaire JF, Philie J, Gan L, Hayden MR, McPherson PS (2005) Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J Biol Chem 280:6101–6108

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Helton TD, Blanpied TA, Rácz B, Newpher TM, Weinberg RJ, Ehlers MD (2007) Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer. Neuron 55:874–889

    Article  PubMed  CAS  Google Scholar 

  • Man HY, Ju W, Ahmadian G, Wang YT (2000) Intracellular trafficking of AMPA receptors in synaptic plasticity. Cell Mol Life Sci 57:1526–1534

    Article  PubMed  CAS  Google Scholar 

  • McPherson PS, Ritter B (2005) Peptide motifs: building the clathrin machinery. Mol Neurobiol 32:73–87

    Article  PubMed  CAS  Google Scholar 

  • Metzler M, Legendre-Guillemin V, Gan L, Chopra V, Kwok A, McPherson PS, Hayden MR (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J Biol Chem 276:39271–39276

    Article  PubMed  CAS  Google Scholar 

  • Metzler M, Li B, Gan L, Georgiou J, Gutekunst CA, Wang Y, Torre E, Devon RS, Oh R, Legendre-Guillemin V, Rich M, Alvarez C, Gertsenstein M, McPherson PS, Nagy A, Wang YT, Roder JC, Raymond LA, Hayden MR (2003) Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO J 22:3254–3266

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Perez de la Cruz V, Santamaría A (2007) Integrative hypothesis for Huntington’s disease: a brief review of experimental evidence. Physiol Res 56:513–526

    PubMed  CAS  Google Scholar 

  • Puthenveedu MA, Yudowski GA, Von Zastrow M (2007) Endocytosis of neurotransmitter receptors: location matters. Cell 130:988–989

    Article  PubMed  CAS  Google Scholar 

  • Richards DA, Watimosin C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27:551–559

    Article  PubMed  CAS  Google Scholar 

  • Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, Wenthold RJ (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    Article  Google Scholar 

  • Slevnev VI, De Camilli P (2000) Accesory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 1:161–172

    Article  Google Scholar 

  • Sun Z, Chen Q, Reiner A (2003) Enkephalinergic striatal projection neurons become less affected by quinolinic acid than substance P-containing striatal projection neurons as rats age. Exp Neurol 184:034–1042

    Article  Google Scholar 

  • Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B (2004) Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience 127:319–332

    Article  PubMed  CAS  Google Scholar 

  • Tebar F, Sorkina T, Ericsson M, Kirchhausen T (1996) Eps 15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated vesicles. J Biol Chem 271:28727–28730

    Article  PubMed  CAS  Google Scholar 

  • Wang YT (2008) Probing the role of AMPAR endocytosis and long-term depression in behavioural sensitization: relevance to treatment of brain disorders, including drug addiction. Br J Pharmacol 153:389–395

    Article  Google Scholar 

  • Wang Y, Ju W, Liu L, Fam S, D’Souza S, Taghibiglou C, Salter M, Wang YT (2004) Alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR) endocytosis is essential for N-methyl-D-aspartate-induced neuronal apoptosis. J Biol Chem 279:41267–41270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from SECyT (UNCuyo-Argentina), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and the VolksWagen Stiftung (Germany). We thank Mr. T. Sartor for the valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Sosa.

Additional information

A. Seltzer and M. A. Sosa contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgonovo, J., Seltzer, A. & Sosa, M.A. Acute intrastriatal administration of quinolinic acid affects the expression of the coat protein AP-2 and its interaction with membranes. J Neural Transm 116, 1201–1208 (2009). https://doi.org/10.1007/s00702-009-0262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0262-5

Keywords

Navigation