Journal of Neural Transmission

, 116:1093 | Cite as

Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease

  • Silvie Sedláčková
  • Irena Rektorová
  • Hana Srovnalová
  • Ivan Rektor
Movement Disorders - Original Article


The aim of the present study was to investigate the effects of one session of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left dorsal premotor cortex (PMd) and left dorsolateral prefrontal cortex (DLPFC) on choice reaction time in a noise-compatibility task, and cognitive functions in patients with Parkinson’s disease (PD). Clinical motor symptoms of PD were assessed as well. Ten patients with PD entered a randomized, placebo-controlled study with a crossover design. Each patient received 10 Hz stimulation over the left PMd and DLPFC (active stimulation sites) and the occipital cortex (OCC; a control stimulation site) in the OFF motor state, i.e. at least after 12 h of dopaminergic drugs withdrawal. Frameless stereotaxy was used to target the optimal position of the coil. For the evaluation of reaction time, we used a noise-compatibility paradigm. A short battery of neuropsychological tests was performed to evaluate executive functions, working memory, and psychomotor speed. Clinical assessment included a clinical motor evaluation using part III of the Unified Parkinson’s Disease Rating Scale. Statistical analysis revealed no significant effect of rTMS applied over the left PMd and/or DLPFC in patients with PD in any of the measured parameters. In this study, we did not observe any effect of one session of high frequency rTMS applied over the left PMd and/or DLPFC on choice reaction time in a noise-compatibility task, cognitive functions, or motor features in patients with PD. rTMS applied over all three stimulated areas was well tolerated and safe in terms of the cognitive and motor effects.


Repetitive transcranial magnetic stimulation Parkinson’s disease Choice reaction time Dorsal premotor cortex Dorsolateral prefrontal cortex Executive functions 


  1. Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (are 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMedCrossRefGoogle Scholar
  2. Barrett J, Della-Maggiore V, Chouinard PA, Paus T (2004) Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioural and brain imaging studies. Neuropsychopharmacology 29:1172–1189PubMedCrossRefGoogle Scholar
  3. Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMedCrossRefGoogle Scholar
  4. Bäumer T, Hidding U, Hamel W, Buhmann C, Moll CK, Gerloff C, Orth M, Siebner HR, Münchau A (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov Disord 24(5):672–676Google Scholar
  5. Bermpohl F, Fregni F, Boggio PS, Thut G, Northoff G, Otachi PT, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. Neuroreport 16:615–619PubMedCrossRefGoogle Scholar
  6. Boggio PS, Fregni F, Bermpohl F, Mansur CG, Rosa M, Rumi DO, Barbosa ER, Odebrecht Rosa M, Pascual-Leone A, Rigonatti SP, Marcolin MA, Araujo Silva MT (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184PubMedCrossRefGoogle Scholar
  7. Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111:323–345PubMedCrossRefGoogle Scholar
  8. Buhmann C, Gorsler A, Bäumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner HR, Münchau A (2004) Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 127:2732–2746PubMedCrossRefGoogle Scholar
  9. Cappa SF, Sandrini M, Rossinin PM, Sosta K, Minuissi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723PubMedGoogle Scholar
  10. Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRefGoogle Scholar
  11. Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J Int Neuropsychol Soc 9:419–428PubMedCrossRefGoogle Scholar
  12. Cropley VL, Fujita M, Innis RB, Nathan PJ (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907PubMedCrossRefGoogle Scholar
  13. del Olmo MF, Bello O, Cudeiro J (2007) Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 118:131–139PubMedCrossRefGoogle Scholar
  14. Dubois B, Anrade K, Levy R (2008) Executive dysfunction and neurocognitive testing. In: Duyckaerts C, Litvan I (eds) Dementias: handbook of clinical neurology (Series Editors: Aminoff MJ, Boller F, Swaab DF). Elsevier, Amsterdam, pp 35–52Google Scholar
  15. Eimer M, Hommel B, Prinz W (1995) S-R compatibility and response selection. Acta Psychol 90:301–313CrossRefGoogle Scholar
  16. Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord 24(3):357–363PubMedCrossRefGoogle Scholar
  17. Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, Athar S, Green J, McDonald W, DeLong MR (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118:2189–2194PubMedCrossRefGoogle Scholar
  18. Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 17:2915–2918CrossRefGoogle Scholar
  19. Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedGoogle Scholar
  20. Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurosurg Psychiatry 75:71–1174CrossRefGoogle Scholar
  21. Frith D, Friston KJ, Liddle P, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologie 29:1137–1148CrossRefGoogle Scholar
  22. Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, Berman KF (2004) Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 42:1781–1787PubMedCrossRefGoogle Scholar
  23. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752PubMedCrossRefGoogle Scholar
  24. Gotham AM, Brown RG, Marsden CD (1988) Frontal cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 2:299–321CrossRefGoogle Scholar
  25. Halsband U, Passingham RE (1985) Premotor cortex and the conditions for movement in monkey (Macaca fascicularis). Behav Brain Res 18:269–277PubMedCrossRefGoogle Scholar
  26. Halstead WC (1947) Brain and intelligence: a quantitative study of the frontal lobes. University of Chicago Press, ChicagoGoogle Scholar
  27. Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84PubMedCrossRefGoogle Scholar
  28. Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Yutaka, Oda M, Ohta K, Yamada Y, Tamura Mamoru (2000) Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res 9:339–342PubMedCrossRefGoogle Scholar
  29. Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121:2135–2143PubMedCrossRefGoogle Scholar
  30. Jahanshahi M (2005) Other cognitive functions. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 281–302Google Scholar
  31. Jahanshahi M, Dirnberger G, Fulle R, Firth CD (1997) The functional anatomy of random number generation studied with PET. J Cereb Blood Flow Metab 17(1):S643Google Scholar
  32. Jahanshahi M, Profice P, Brown RG, Mike C, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544PubMedCrossRefGoogle Scholar
  33. Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2:1Google Scholar
  34. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRefGoogle Scholar
  35. Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, Kessler J, Sturm V, Heiss WD, Hilker R (2009) Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 72:42–49PubMedCrossRefGoogle Scholar
  36. Kulisevsky J, Avila A, Barbano M, Antonijoan R, Berthier M, Gironelli A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132 PubMedCrossRefGoogle Scholar
  37. Liu X, Banich MT, Jacobson BL, Tanabe JL (2006) Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16:827–834PubMedCrossRefGoogle Scholar
  38. Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 12:325–331CrossRefGoogle Scholar
  39. Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140PubMedCrossRefGoogle Scholar
  40. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430PubMedCrossRefGoogle Scholar
  41. Marois R, Larson JM, Chun MM, Shima D (2006) Response-specific sources of dual-task interference in human pre-motor cortex. Psychol Res 70:436–447PubMedCrossRefGoogle Scholar
  42. Milham MP, Banich MT (2005) Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Hum Brain Mapp 25:328–335PubMedCrossRefGoogle Scholar
  43. Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the Stroop task. Brain Res Cogn Brain Res 17:212–222PubMedCrossRefGoogle Scholar
  44. Montgomery SA, Asberg MA (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389PubMedCrossRefGoogle Scholar
  45. Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin BS, Robinson RG (2002) Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58:1288–1290PubMedGoogle Scholar
  46. Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17PubMedCrossRefGoogle Scholar
  47. Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls-Solé J, Brasil-Neto JP, Wassermann EM, Cohen LG et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130PubMedCrossRefGoogle Scholar
  48. Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M (1994) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898PubMedGoogle Scholar
  49. Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217PubMedCrossRefGoogle Scholar
  50. Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362(6418):342–345PubMedCrossRefGoogle Scholar
  51. Paus T (1998) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224CrossRefGoogle Scholar
  52. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method of studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMedGoogle Scholar
  53. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036PubMedCrossRefGoogle Scholar
  54. Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory task. Proc Natl Acad Sci USA 90:878–882PubMedCrossRefGoogle Scholar
  55. Praamstra P, Stegman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Brain 121:167–177PubMedCrossRefGoogle Scholar
  56. Praamstra P, Kleine B, Schnitzler A (1999) Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. Neuroreport 10:3671–3674PubMedCrossRefGoogle Scholar
  57. Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161PubMedCrossRefGoogle Scholar
  58. Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I (2007) Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Mov Disord 22:1518–1519PubMedCrossRefGoogle Scholar
  59. Ridderinkhof KR (2002) Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, OxfordGoogle Scholar
  60. Rushworth MF, Johansen-Berg H, Gobel SM, Delvin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:89–100CrossRefGoogle Scholar
  61. Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE et al (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study Brain 120:963–976Google Scholar
  62. Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movement: a study using transcranial magnetic stimulation. Brain 121:785–799PubMedCrossRefGoogle Scholar
  63. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMedGoogle Scholar
  64. Siebner HR (2005) Treatment of Movement Disorders. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, PhiladelphiaGoogle Scholar
  65. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRefGoogle Scholar
  66. Siebner HR, Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178:91–94PubMedCrossRefGoogle Scholar
  67. Siebner HR, Loeer C, Mentschel C, Weindl D, Conrad B (2002) Repetitive transcranial magnetic stimulation in Parkinson’s disease and focal dystonia. Clin Neurophysiol Suppl 54:399–409CrossRefGoogle Scholar
  68. Silberman CD, Laks J, Capitão CF, Rodrigues CS, Moreira I, Engelhardt E (2006) Recognizing depression in patients with Parkinson’s disease: accuracy and specificity of two depression rating scale. Arq Neuropsiquiatr 64:407–411PubMedGoogle Scholar
  69. Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95:876–882PubMedCrossRefGoogle Scholar
  70. Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269PubMedCrossRefGoogle Scholar
  71. Speer AM, Repella JD, Figueras S, Demian NK, Kimbrell TA, Wasserman EM, Post RM (2001) Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17:259–263PubMedCrossRefGoogle Scholar
  72. Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:1–4Google Scholar
  73. Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370PubMedCrossRefGoogle Scholar
  74. Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S, Ugawa Y (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573PubMedCrossRefGoogle Scholar
  75. Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRefGoogle Scholar
  76. Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45:1440–1446PubMedCrossRefGoogle Scholar
  77. Wechsler D (1975) Wechsler memory scale. Psychological Corporation, New YorkGoogle Scholar
  78. Wessel K, Zeffiro T, Toro C, Hallett M (1997) Self-paced versus metronome-paced finger movements. A positron emission tomography study. J Neuroimaging 7:145–151PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Silvie Sedláčková
    • 1
  • Irena Rektorová
    • 1
  • Hana Srovnalová
    • 1
  • Ivan Rektor
    • 1
  1. 1.First Department of Neurology, St. Anne’s Teaching HospitalMasaryk UniversityBrnoCzech Republic

Personalised recommendations